Skip to main content
Log in

A Fully Dynamic Graph Algorithm for Recognizing Interval Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present the first dynamic graph algorithm for recognizing interval graphs. The algorithm runs in O(nlog n) worst-case time per edge deletion or edge insertion, where n is the number of vertices in the graph. The algorithm uses a new representation of interval graphs called the train tree, which is based on the clique-separator graph representation of chordal graphs. The train tree has a number of useful properties and it can be constructed from the clique-separator graph in O(n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computation. IMA, vol. 56, pp. 1–29. Springer, New York (1993)

    Google Scholar 

  2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    MATH  MathSciNet  Google Scholar 

  3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999). Monograph

    MATH  Google Scholar 

  4. Corneil, D.G., Kim, H., Nataranjan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55, 99–104 (1995)

    Article  MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180 (1998)

  6. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton (1998). Chap. 8

    Google Scholar 

  8. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification—a technique for speeding up dynamic graph algorithms. J. ACM 44(5), 669–696 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Rosen, K.H. (ed.) Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (1999). Chap. 17

    Google Scholar 

  10. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)

    MATH  MathSciNet  Google Scholar 

  11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  12. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31, 289–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ho, C., Lee, R.C.T.: Counting clique trees and computing perfect elimination schemes in parallel. Inf. Process. Lett. 31, 61–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hsu, W.L.: On-line recognition of interval graphs. In: Proceedings of Combinatorics and Computer Science. LNCS, vol. 1120, pp. 27–38. Springer, Berlin (1996)

    Google Scholar 

  16. Hsu, W.L., Ma, T.H.: Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs. SIAM J. Comput. 28(3), 1004–1020 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ibarra, L.: The clique-separator graph for chordal graphs. Discrete Appl. Math. (2009, accepted)

  18. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms 4(4), 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ibarra, L.: A fully dynamic graph algorithm for recognizing proper interval graphs. (2008, submitted)

  20. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 434–451 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lundquist, M.: Zero patterns, chordal graphs, and matrix completions. Ph.D. Thesis, Dept. of Mathematical Sciences, Clemson University (1990)

    Google Scholar 

  23. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Society for Industrial and Applied Mathematics, Philadelphia (1999). Monograph

    MATH  Google Scholar 

  24. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2), 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Ibarra.

Additional information

Most of the results in this paper were part of the author’s Ph.D. Thesis at the University of Victoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibarra, L. A Fully Dynamic Graph Algorithm for Recognizing Interval Graphs. Algorithmica 58, 637–678 (2010). https://doi.org/10.1007/s00453-009-9291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9291-6

Keywords

Navigation