Skip to main content
Log in

Fully Dynamic Algorithm for Recognition and Modular Decomposition of Permutation Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper considers the problem of maintaining a compact representation (O(n) space) of permutation graphs under vertex and edge modifications (insertion or deletion). That representation allows us to answer adjacency queries in O(1) time. The approach is based on a fully dynamic modular decomposition algorithm for permutation graphs that works in O(n) time per edge and vertex modification. We thereby obtain a fully dynamic algorithm for the recognition of permutation graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: 13th European Symposium on Algorithm (ESA’05). Lecture Notes in Computer Science, vol. 3669, pp. 779–790. Springer, New York (2005)

    Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    MATH  Google Scholar 

  3. Bui-Xuan, B.M., Habib, M., Paul, C.: Revisiting uno and yagiura’s algorithm. In: 16th International Symposium on Algorithms and Computation (ISAAC’05). Lecture Notes in Computer Science, vol. 3827, pp. 146–155. Springer, New York (2005)

    Google Scholar 

  4. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear time recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. In: 31th International Workshop on Graph Theoretical Concepts in Computer Science (WG’05). Lecture Notes in Computer Science, vol. 3787. Springer, New York (2005)

    Chapter  Google Scholar 

  6. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Montgolfier, F.: Décomposition modulaire des graphes—Théorie, extensions et algorithmes. Ph.D. thesis, Université de Montpellier 2, France (2003)

  8. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ehrenfeucht, A., Gabow, H.N., McConnell, R.M., Sullivan, S.J.: An O(n 2) divide-and-conquer algorithm for the prime tree decomposition of two-structures and modular decomposition of graphs. J. Algorithms 16, 283–294 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eppstein, D., Galil, Z., Italiano, G.F., Spencer, T.H.: Separator-based sparsification II: Edge and vertex connectivity. SIAM J. Comput. 28(1), 341–381 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hung. 18, 25–66 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic, New York (1980)

    MATH  Google Scholar 

  13. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ibarra, L.: Fully dynamic algorithms for chordal graphs. In: 10th ACM-SIAM Annual Symposium on Discrete Algorithm (SODA’99), pp. 923–924 (1999)

  15. McConnell, R.M., Spinrad, J.: Linear-time transitive orientation. In: 8th ACM-SIAM Annual Symposium on Discrete Algorithm (SODA’97), pp. 19–25 (1997)

  16. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201(1–3), 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Möhring, R.H.: Algorithmic aspect of the substitution decomposition in optimization over relations, set systems and boolean functions. Ann. Oper. Res. 4, 195–225 (1985)

    Article  MathSciNet  Google Scholar 

  18. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Ann. Discrete Math. 19, 257–356 (1984)

    Google Scholar 

  19. Muller, J.H., Spinrad, J.P.: Incremental modular decomposition algorithm. J. Assoc. Comput. Mach. 36(1), 1–19 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: A fully dynamic algorithm for the recognition of P 4-sparse graphs. In: 32nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’06). Lecture Notes in Computer Science, vol. 4271, pp. 256–268. Springer, New York (2006)

    Chapter  Google Scholar 

  21. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spinrad, J.: Efficient Graph Representations. Fields Institute Monographs, vol. 19. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  23. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Crespelle.

Additional information

This paper is a full version of the extended abstract appeared in [5].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crespelle, C., Paul, C. Fully Dynamic Algorithm for Recognition and Modular Decomposition of Permutation Graphs. Algorithmica 58, 405–432 (2010). https://doi.org/10.1007/s00453-008-9273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9273-0

Keywords

Navigation