Skip to main content
Log in

Evolutionary Algorithms and Matroid Optimization Problems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We analyze the performance of evolutionary algorithms on various matroid optimization problems that encompass a vast number of efficiently solvable as well as NP-hard combinatorial optimization problems (including many well-known examples such as minimum spanning tree and maximum bipartite matching). We obtain very promising bounds on the expected running time and quality of the computed solution. Our results establish a better theoretical understanding of why randomized search heuristics yield empirically good results for many real-world optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, London (1997)

    Book  MATH  Google Scholar 

  2. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Designing hierarchical survivable networks. Oper. Res. 46(1), 116–136 (1998)

    Article  MATH  Google Scholar 

  3. Cunningham, W.H.: Improved bounds for matroid partition and intersection algorithms. SIAM J. Comput. 15(4), 948–957 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dörr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. In: Proc. of the 10th Genetic and Evolutionary Computation Conference (GECCO’08), Atlanta, USA (2008)

  5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  7. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  9. Fischer, S., Wegener, I.: The one-dimensional Ising model: Mutation versus recombination. Theor. Comput. Sci. 344(2–3), 208–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. In: Proc. of the 23rd Annual ACM Symp. on Theory of Computing (STOC’91), New Orleans, USA, pp. 112–122 (1991)

  11. Gabow, H.N., Xu, Y.: Efficient theoretic and practical algorithms for linear matroid intersection problems. J. Comput. Syst. Sci. 53, 129–147 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gale, D.: Optimal assignments in an ordered set: an application of matroid theory. J. Comb. Theory 4, 176–180 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proc. of the 20th Symp. on Theoretical Aspects of Computer Science (STACS’03), pp. 415–426 (2003)

  15. Giel, O., Wegener, I.: Maximum cardinality matchings on trees by randomized local search. In: Proc. of the 8th Genetic and Evolutionary Computation Conference (GECCO’06), Seattle, USA, pp. 539–546 (2006)

  16. Goemans, M.X.: Minimum bounded degree spanning trees. In: Proc. of the 47th Annual IEEE Symp. on Foundations of Computer Science (FOCS ’06), pp. 273–282 (2006)

  17. Harvey, N.J.A., Karger, D.R., Murota, K.: Deterministic network coding by matrix completion. In: Proc. of the 16th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA’05), pp. 489–498 (2005)

  18. Hassin, R., Levin, A.: An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection. SIAM J. Comput. 33(2), 261–268 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18, 1138–1162 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jenkyns, T.A.: The efficiency of the greedy algorithm. In: Proc. of the 7th S-E Conference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica, pp. 341–350 (1976)

  21. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. In: Alspach, B., Hell, P., Miller, D.J. (eds.) Aspects of Combinatorics. Annals of Discrete Mathematics, vol. 2, pp. 65–74. North-Holland, Amsterdam (1978)

    Chapter  Google Scholar 

  22. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Applications, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Michail, D.: Minimum cycle basis: algorithms and applications. Ph.D. Thesis, Saarland University (2006)

  24. Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3), 305–319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Oxley, J.G.: Matroid Theory. Oxford University Press, London (1992)

    MATH  Google Scholar 

  27. Rado, R.: Note on independence functions. Proc. Lond. Math. Soc. 7(3), 300–320 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  28. Raidl, G.R., Julstrom, B.A.: Edge sets: An effective evolutionary coding of spanning trees. IEEE Trans. Evol. Comput. 7(3), 225–239 (2003)

    Article  Google Scholar 

  29. Raidl, G.R., Koller, G., Julstrom, B.A.: Biased mutation operators for subgraph-selection problems. IEEE Trans. Evol. Comput. 10(2), 145–156 (2006)

    Article  Google Scholar 

  30. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest path problems. J. Math. Model. Algorithms 3, 349–366 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proc. of the 7th Genetic and Evolutionary Computation Conference (GECCO’05), Washington, DC, pp. 1161–1167 (2005)

  33. Wegener, I.: Towards a theory of randomized search heuristics. In: Proc. of Mathematical Foundations of Computer Science (MFCS’03), pp. 125–141 (2003)

  34. Wegener, I.: Randomized search heuristics as an alternative to exact optimization. In: Lenski, W. (ed.) Logic versus Approximation, pp. 138–149 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Reichel.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichel, J., Skutella, M. Evolutionary Algorithms and Matroid Optimization Problems. Algorithmica 57, 187–206 (2010). https://doi.org/10.1007/s00453-008-9253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9253-4

Keywords

Navigation