Multiline Addressing by Network Flow


We consider an optimization problem arising in the design of controllers for OLED displays. Our objective is to minimize amplitude of the electrical current through the diodes which has a direct impact on the lifetime of such a display. Modeling the problem in mathematical terms yields a class of network flow problems where we group the arcs and pay in each group only for the arc carrying the maximum flow. We develop (fully) combinatorial approximation heuristics suitable for being implemented in the hardware of a control device that drives an OLED display.


  1. 1.

    Xu, C., Wahl, J., Eisenbrand, F., Karrenbauer, A., Soh, K.M., Hitzelberger, C.: Method for triggering matrix displays. German Patent Application 10 2005 063 159 PCT/EP2006/012362 (filed 12/30/2005, pending)

  2. 2.

    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

    Google Scholar 

  3. 3.

    Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1097 (1979)

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2, 393–410 (1954)

    MathSciNet  Google Scholar 

  5. 5.

    Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems, FOCS pp. 300–309 (1998)

  6. 6.

    Xu, C., Karrenbauer, A., Soh, K.M., Wahl, J.: A new addressing scheme for PM OLED display. In: Morreale, J. (ed.) SID 2007 International Symposium Digest of Technical Papers. Society for Information Display, vol. XXXVIII, pp. 97–100. Long Beach, USA (2007)

  7. 7.

    Eisenbrand, F., Karrenbauer, A., Xu, C.: Algorithms for longer OLED lifetime. In: Demetrescu, C. (ed.) WEA 2007. Lecture Notes in Computer Science, vol. 4525, pp. 338–351. Springer, Berlin (2007)

    Google Scholar 

  8. 8.

    Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  9. 9.

    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization, Adv. Neural Inf. Process. Syst. 13 (2001)

  10. 10.

    Smith, E., Routley, P., Foden, C.: Processing digital data using non-negative matrix factorization. Patent GB 2421604A, pending (2005)

  11. 11.

    Smith, E.C.: Total matrix addressing (TMA™). In: Morreale, J. (ed.) SID 2007 International Symposium Digest of Technical Papers. Society for Information Display, vol. XXXVIII, pp. 93–96. Long Beach, USA (2007)

  12. 12.

    Ehrgott, M., Hamacher, H.W., Nußbaum, M.: Decomposition of matrices and static multileaf collimators: a survey, vol. 12, pp. 25–46 (2007)

  13. 13.

    Murano, S., Burghart, M., Birnstock, J., Wellmann, P., Vehse, M., Werner, A., Canzler, T., Stübinger, T., He, G., Pfeiffer, M., Boerner, H.: Highly efficient white OLEDs for lighting applications. SPIE, San Diego (2005)

  14. 14.

    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  15. 15.

    Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    Google Scholar 

  16. 16.

    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andreas Karrenbauer.

Additional information

M. Skutella supported by DFG Research Center MATHEON in Berlin.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Eisenbrand, F., Karrenbauer, A., Skutella, M. et al. Multiline Addressing by Network Flow. Algorithmica 53, 583–596 (2009).

Download citation


  • Combinatorial optimization
  • Network design
  • OLED
  • Algorithm engineering
  • Matrix decomposition