On the Quantum Query Complexity of Local Search in Two and Three Dimensions

Abstract

The quantum query complexity of searching for local optima has been a subject of much interest in the recent literature. For the d-dimensional grid graphs, the complexity has been determined asymptotically for all fixed d≥5, but the lower dimensional cases present special difficulties, and considerable gaps exist in our knowledge. In the present paper we present near-optimal lower bounds, showing that the quantum query complexity for the 2-dimensional grid [n]2 is Ω(n 1/2−δ), and that for the 3-dimensional grid [n]3 is Ω(n 1−δ), for any fixed δ>0.

A general lower bound approach for this problem, initiated by Aaronson (based on Ambainis’ adversary method for quantum lower bounds), uses random walks with low collision probabilities. This approach encounters obstacles in deriving tight lower bounds in low dimensions due to the lack of degrees of freedom in such spaces. We solve this problem by the novel construction and analysis of random walks with non-uniform step lengths. The proof employs in a nontrivial way sophisticated results of Sárközy and Szemerédi, Bose and Chowla, and Halász from combinatorial number theory, as well as less familiar probability tools like Esseen’s Inequality.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2.

    Aldous, D.: Minimization algorithms and random walk on the d-Cube. Ann. Probab. 11(2), 403–413 (1983)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computation. SIAM J. Comput. 26(5), 1510–1523 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Bose, R.C., Chowla, S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37(1), 141–147 (1962)

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    Chen, X., Deng, X.: On algorithms for discrete and approximate brouwer fixed points. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing, pp. 323–330. Assoc. Comput. Mach., New York (2005)

    Google Scholar 

  8. 8.

    Esseen, C.G.: Fourier analysis of distribution functions. Acta Math. 77, 1–125 (1945)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Friedl, K., Ivanyos, G., Santha, M., Verhoeven, Y.: On the black-box complexity of Sperner’s Lemma. In: Proc. of the 15th International Symposium on Fundamentals of Computation Theory, pp. 245–257. Springer, Berlin (2005)

    Google Scholar 

  10. 10.

    Halász, G.: Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hung. 8(3–4), 197–211 (1977)

    Article  Google Scholar 

  11. 11.

    Halberstam, H., Roth, K.F.: Sequences. Oxford University Press, Oxford (1966)

    Google Scholar 

  12. 12.

    Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Llewellyn, D., Tovey, C., Trick, M.: Local optimization on graphs. Discrete Appl. Math. 23, 157–178 (1989). Erratum: 46, 93–94 (1993)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Santha, M., Szegedy, M.: Quantum and classical query complexities of local search are polynomially related. In: Proc. of the 36th Annual ACM Symposium on Theory of Computing, pp. 494–501. Assoc. Comput. Mach., New York (2004)

    Google Scholar 

  15. 15.

    Sárközy, A., Szemerédi, E.: Über ein Problem von Erdös und Moser. Acta Arith. 11, 205–208 (1965)

    MATH  MathSciNet  Google Scholar 

  16. 16.

    Verhoeven, Y.: Enhanced algorithms for local search. Inf. Process. Lett. 97, 171–176 (2006)

    Article  MathSciNet  Google Scholar 

  17. 17.

    Zhang, S.: On the power of Ambainis’s lower bounds. Theor. Comput. Sci. 339, 241–256 (2005)

    MATH  Article  Google Scholar 

  18. 18.

    Zhang, S.: New upper and lower bounds for randomized and quantum Local Search. In: Proc. of the 38th ACM Symposium on Theory of Computing, pp. 634–643. Assoc. Comput. Mach., New York (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Additional information

This work was supported in part by the National Natural Science Foundation of China Grant 60553001, 60603005, and the National Basic Research Program of China Grant 2007CB807900, 2007CB807901.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, X., Yao, A.C. On the Quantum Query Complexity of Local Search in Two and Three Dimensions. Algorithmica 55, 576–600 (2009). https://doi.org/10.1007/s00453-008-9170-6

Download citation

Keywords

  • Local search
  • Quantum query complexity