Advertisement

Algorithmica

, Volume 55, Issue 3, pp 576–600 | Cite as

On the Quantum Query Complexity of Local Search in Two and Three Dimensions

  • Xiaoming Sun
  • Andrew Chi-Chih Yao
Article

Abstract

The quantum query complexity of searching for local optima has been a subject of much interest in the recent literature. For the d-dimensional grid graphs, the complexity has been determined asymptotically for all fixed d≥5, but the lower dimensional cases present special difficulties, and considerable gaps exist in our knowledge. In the present paper we present near-optimal lower bounds, showing that the quantum query complexity for the 2-dimensional grid [n]2 is Ω(n 1/2−δ ), and that for the 3-dimensional grid [n]3 is Ω(n 1−δ ), for any fixed δ>0.

A general lower bound approach for this problem, initiated by Aaronson (based on Ambainis’ adversary method for quantum lower bounds), uses random walks with low collision probabilities. This approach encounters obstacles in deriving tight lower bounds in low dimensions due to the lack of degrees of freedom in such spaces. We solve this problem by the novel construction and analysis of random walks with non-uniform step lengths. The proof employs in a nontrivial way sophisticated results of Sárközy and Szemerédi, Bose and Chowla, and Halász from combinatorial number theory, as well as less familiar probability tools like Esseen’s Inequality.

Keywords

Local search Quantum query complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S.: Lower bounds for local search by quantum arguments. SIAM J. Comput. 35(4), 804–824 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aldous, D.: Minimization algorithms and random walk on the d-Cube. Ann. Probab. 11(2), 403–413 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambainis, A.: Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci. 72(2), 220–238 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bennett, C., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computation. SIAM J. Comput. 26(5), 1510–1523 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bose, R.C., Chowla, S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37(1), 141–147 (1962) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, X., Deng, X.: On algorithms for discrete and approximate brouwer fixed points. In: Proc. of the 37th Annual ACM Symposium on Theory of Computing, pp. 323–330. Assoc. Comput. Mach., New York (2005) Google Scholar
  8. 8.
    Esseen, C.G.: Fourier analysis of distribution functions. Acta Math. 77, 1–125 (1945) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Friedl, K., Ivanyos, G., Santha, M., Verhoeven, Y.: On the black-box complexity of Sperner’s Lemma. In: Proc. of the 15th International Symposium on Fundamentals of Computation Theory, pp. 245–257. Springer, Berlin (2005) CrossRefGoogle Scholar
  10. 10.
    Halász, G.: Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hung. 8(3–4), 197–211 (1977) CrossRefGoogle Scholar
  11. 11.
    Halberstam, H., Roth, K.F.: Sequences. Oxford University Press, Oxford (1966) zbMATHGoogle Scholar
  12. 12.
    Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search? J. Comput. Syst. Sci. 37(1), 79–100 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Llewellyn, D., Tovey, C., Trick, M.: Local optimization on graphs. Discrete Appl. Math. 23, 157–178 (1989). Erratum: 46, 93–94 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Santha, M., Szegedy, M.: Quantum and classical query complexities of local search are polynomially related. In: Proc. of the 36th Annual ACM Symposium on Theory of Computing, pp. 494–501. Assoc. Comput. Mach., New York (2004) Google Scholar
  15. 15.
    Sárközy, A., Szemerédi, E.: Über ein Problem von Erdös und Moser. Acta Arith. 11, 205–208 (1965) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Verhoeven, Y.: Enhanced algorithms for local search. Inf. Process. Lett. 97, 171–176 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Zhang, S.: On the power of Ambainis’s lower bounds. Theor. Comput. Sci. 339, 241–256 (2005) zbMATHCrossRefGoogle Scholar
  18. 18.
    Zhang, S.: New upper and lower bounds for randomized and quantum Local Search. In: Proc. of the 38th ACM Symposium on Theory of Computing, pp. 634–643. Assoc. Comput. Mach., New York (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute for Theoretical Computer ScienceTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations