, Volume 54, Issue 2, pp 181–207 | Cite as

On Two Techniques of Combining Branching and Treewidth

  • Fedor V. Fomin
  • Serge GaspersEmail author
  • Saket Saurabh
  • Alexey A. Stepanov


Branch & Reduce and dynamic programming on graphs of bounded treewidth are among the most common and powerful techniques used in the design of moderately exponential time exact algorithms for NP hard problems. In this paper we discuss the efficiency of simple algorithms based on combinations of these techniques. The idea behind these algorithms is very natural: If a parameter like the treewidth of a graph is small, algorithms based on dynamic programming perform well. On the other side, if the treewidth is large, then there must be vertices of high degree in the graph, which is good for branching algorithms. We give several examples of possible combinations of branching and programming which provide the fastest known algorithms for a number of NP hard problems. All our algorithms require non-trivial balancing of these two techniques.

In the first approach the algorithm either performs fast branching, or if there is an obstacle for fast branching, this obstacle is used for the construction of a path decomposition of small width for the original graph. Using this approach we give the fastest known algorithms for Minimum Maximal Matching and for counting all 3-colorings of a graph.

In the second approach the branching occurs until the algorithm reaches a subproblem with a small number of edges (and here the right choice of the size of subproblems is crucial) and then dynamic programming is applied on these subproblems of small width. We exemplify this approach by giving the fastest known algorithm to count all minimum weighted dominating sets of a graph.

We also discuss how similar techniques can be used to design faster parameterized algorithms.


Exact exponential time algorithms Parameterized algorithms NP hard problems Treewidth #3-Coloring #Minimum dominating set Minimum maximal matching k-Weighted vertex cover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelsmark, O., Jonsson, P.: Improved algorithms for counting solutions in constraint satisfaction problems. In: Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP 2003), pp. 81–95 (2003) Google Scholar
  2. 2.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–21 (1993) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32, 547–556 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chandran, L.S., Grandoni, F.: Refined memorization for vertex cover. Inf. Process. Lett. 93, 125–131 (2005) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41, 280–301 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999) Google Scholar
  8. 8.
    Eppstein, D.: Quasiconvex analysis of multivariate recurrence equations for backtracking algorithms. ACM Trans. Algorithms 2, 492–509 (2006) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fernau, H.: Edge dominating set: efficient enumeration-based exact algorithms. In: Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC 2006). Lecture Notes in Computer Science, vol. 4169, pp. 142–153. Springer, Berlin (2006) CrossRefGoogle Scholar
  10. 10.
    Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97, 191–196 (2006) CrossRefGoogle Scholar
  11. 11.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bull. EATCS 87, 47–77 (2005) MathSciNetGoogle Scholar
  12. 12.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination—a case study. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005). Lecture Notes in Computer Science, vol. 3580, pp. 191–203. Springer, Berlin (2005) Google Scholar
  13. 13.
    Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Bounding the number of minimal dominating sets: a measure and conquer approach. In: Proceedings of the 16th Annual International Symposium on Algorithms and Computation (ISAAC 2005). Lecture Notes in Computer Science, vol. 3827, pp. 573–582. Springer, Berlin (2005) Google Scholar
  14. 14.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Proceedings of the 30th Workshop on Graph Theoretic Concepts in Computer Science (WG 2004). Lecture Notes in Computer Science, vol. 3353, pp. 245–256. Springer, Berlin (2005) Google Scholar
  15. 15.
    Fomin, F.V., Gaspers, S., Saurabh, S.: Branching and treewidth based exact algorithms. In: Proceedings of the 17th International Symposium on Algorithms and Computation (ISAAC 2006). Lecture Notes in Computer Science, vol. 4288, pp. 16–25. Springer, Berlin (2006) Google Scholar
  16. 16.
    Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and colorings with applications. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 33 (2005) Google Scholar
  17. 17.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979) Google Scholar
  18. 18.
    Gavril, F., Yannakakis, M.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38, 364–372 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4, 209–214 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Iwama, K.: Worst-case upper bounds for k-SAT. Bull. EATCS 82, 61–71 (2004) MathSciNetGoogle Scholar
  21. 21.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27, 119–123 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Algorithms based in treewidth of sparse graphs. In: Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005). Lecture Notes in Computer Science, vol. 3787, pp. 385–396. Springer, Berlin (2005) CrossRefGoogle Scholar
  23. 23.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved. In: Proceedings of the 16th International Symposium on Theoretical Aspects of Computer Science (STACS 1999). Lecture Notes in Computer Science, vol. 1563, pp. 561–570. Springer, Berlin (1999) Google Scholar
  25. 25.
    Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47, 63–77 (2003) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. (to appear) Google Scholar
  27. 27.
    Randerath, B., Schiermeyer, I.: Exact algorithms for MINIMUM DOMINATING SET. Technical Report zaik-469. Zentrum für Angewandte Informatik Köln, Germany (2004) Google Scholar
  28. 28.
    Schöning, U.: Algorithmics in exponential time. In: Proceedings of the 22nd International Symposium on Theoretical Aspects of Computer Science (STACS 2005). Lecture Notes in Computer Science, vol. 3404, pp. 36–43. Springer, Berlin (2005) Google Scholar
  29. 29.
    Scott, A.D., Sorkin, G.B.: Linear-programming design and analysis of fast algorithms for Max 2-Sat and Max 2-CSP,, cs/0604080, 2006 Google Scholar
  30. 30.
    Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348, 357–365 (2005) zbMATHCrossRefGoogle Scholar
  31. 31.
    Woeginger, G.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial Optimization—Eureka, You Shrink! Lecture Notes in Computer Science, vol. 2570, pp. 185–207. Springer, Berlin (2003) CrossRefGoogle Scholar
  32. 32.
    Woeginger, G.: Space and time complexity of exact algorithms: some open problems. In: Proceedings of the 1st International Workshop on Parameterized and Exact Computation (IWPEC 2004). Lecture Notes in Computer Science, vol. 3162, pp. 281–290. Springer, Berlin (2004) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Serge Gaspers
    • 1
    Email author
  • Saket Saurabh
    • 1
    • 2
  • Alexey A. Stepanov
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations