Skip to main content
Log in

All-Pairs Shortest Paths with Real Weights in O(n 3/log n) Time

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (SIAM J. Comput. 5:49–60, 1976), Takaoka (Inform. Process. Lett. 43:195–199, 1992), Dobosiewicz (Int. J. Comput. Math. 32:49–60, 1990), Han (Inform. Process. Lett. 91:245–250, 2004), Takaoka (Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci., vol. 3106, pp. 278–289, Springer, 2004), and Zwick (Proc. 15th Int. Sympos. Algorithms and Computation, Lect. Notes Comput. Sci., vol. 3341, pp. 921–932, Springer, 2004). The new algorithm is surprisingly simple and different from previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison–Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Sys. Sci. 54, 255–262 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arlazarov, V.L., Dinic, E.C., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Sov. Math. Dokl. 11, 1209–1210 (1970)

    MATH  Google Scholar 

  4. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators. In Proc. 30th ACM Sympos. Theory Comput., pp. 279–288 (1998)

  5. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn) time. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 514–523 (2006)

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw–Hill, New York (2001)

    MATH  Google Scholar 

  8. Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Int. J. Comput. Math. 32, 49–60 (1990)

    Article  MATH  Google Scholar 

  9. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 788–797 (2004)

  10. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci. 51, 261–272 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 49–60 (1976)

    Article  MathSciNet  Google Scholar 

  12. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Syst. Sci. 54, 243–254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Han, Y.: Improved algorithm for all pairs shortest paths. Inform. Process. Lett. 91, 245–250 (2004)

    Article  MathSciNet  Google Scholar 

  14. Matoušek, J.: Computing dominances in E n. Inform. Process. Lett. 38, 277–278 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci. 312, 47–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34, 1398–1431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  18. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)

    Article  MathSciNet  Google Scholar 

  19. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In Proc. 40th IEEE Sympos. Found. Comput. Sci., pp. 605–614 (1999)

  20. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inform. Process. Lett. 43, 195–199 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Proc. 10th Int. Conf. Comput. Comb. Lect. Notes Comput. Sci., vol. 3106, pp. 278–289. Springer, Berlin (2004)

    Google Scholar 

  23. Takaoka, T.: An O(n 3log log n/log n) time algorithm for the all-pairs shortest path problem. Inform. Process. Lett. 96, 155–161 (2005)

    Article  MathSciNet  Google Scholar 

  24. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. In: Proc. 12th European Sympos. Algorithms. Lect. Notes Comput. Sci., vol. 3221, pp. 604–615. Springer, Berlin (2004)

    Google Scholar 

  25. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 289–317 (2002)

    MathSciNet  Google Scholar 

  26. Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Proc. 15th Int. Sympos. Algorithms and Computation. Lect. Notes Comput. Sci., vol. 3341, pp. 921–932. Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Chan.

Additional information

A preliminary version of this paper appeared in Proc. 9th Workshop Algorithms Data Struct. (WADS), Lect. Notes Comput. Sci., vol. 3608, pp. 318–324, Springer, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, T.M. All-Pairs Shortest Paths with Real Weights in O(n 3/log n) Time. Algorithmica 50, 236–243 (2008). https://doi.org/10.1007/s00453-007-9062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9062-1

Keywords

Navigation