Abstract
We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (SIAM J. Comput. 5:49–60, 1976), Takaoka (Inform. Process. Lett. 43:195–199, 1992), Dobosiewicz (Int. J. Comput. Math. 32:49–60, 1990), Han (Inform. Process. Lett. 91:245–250, 2004), Takaoka (Proc. 10th Int. Conf. Comput. Comb., Lect. Notes Comput. Sci., vol. 3106, pp. 278–289, Springer, 2004), and Zwick (Proc. 15th Int. Sympos. Algorithms and Computation, Lect. Notes Comput. Sci., vol. 3341, pp. 921–932, Springer, 2004). The new algorithm is surprisingly simple and different from previous ones.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison–Wesley, Reading (1974)
Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Sys. Sci. 54, 255–262 (1997)
Arlazarov, V.L., Dinic, E.C., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Sov. Math. Dokl. 11, 1209–1210 (1970)
Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators. In Proc. 30th ACM Sympos. Theory Comput., pp. 279–288 (1998)
Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn) time. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pp. 514–523 (2006)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9, 251–280 (1990)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw–Hill, New York (2001)
Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Int. J. Comput. Math. 32, 49–60 (1990)
Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 788–797 (2004)
Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci. 51, 261–272 (1995)
Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 49–60 (1976)
Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Syst. Sci. 54, 243–254 (1997)
Han, Y.: Improved algorithm for all pairs shortest paths. Inform. Process. Lett. 91, 245–250 (2004)
Matoušek, J.: Computing dominances in E n. Inform. Process. Lett. 38, 277–278 (1991)
Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci. 312, 47–74 (2004)
Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34, 1398–1431 (2005)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)
Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)
Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In Proc. 40th IEEE Sympos. Found. Comput. Sci., pp. 605–614 (1999)
Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inform. Process. Lett. 43, 195–199 (1992)
Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Proc. 10th Int. Conf. Comput. Comb. Lect. Notes Comput. Sci., vol. 3106, pp. 278–289. Springer, Berlin (2004)
Takaoka, T.: An O(n 3log log n/log n) time algorithm for the all-pairs shortest path problem. Inform. Process. Lett. 96, 155–161 (2005)
Yuster, R., Zwick, U.: Fast sparse matrix multiplication. In: Proc. 12th European Sympos. Algorithms. Lect. Notes Comput. Sci., vol. 3221, pp. 604–615. Springer, Berlin (2004)
Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 289–317 (2002)
Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Proc. 15th Int. Sympos. Algorithms and Computation. Lect. Notes Comput. Sci., vol. 3341, pp. 921–932. Springer, Berlin (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary version of this paper appeared in Proc. 9th Workshop Algorithms Data Struct. (WADS), Lect. Notes Comput. Sci., vol. 3608, pp. 318–324, Springer, 2005.
Rights and permissions
About this article
Cite this article
Chan, T.M. All-Pairs Shortest Paths with Real Weights in O(n 3/log n) Time. Algorithmica 50, 236–243 (2008). https://doi.org/10.1007/s00453-007-9062-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-007-9062-1