Skip to main content
Log in

Approximation Algorithms for Aligning Points

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of aligning as many points as possible horizontally, vertically, or diagonally, when each point is allowed to be placed anywhere in its own given region. Different shapes of placement regions and different sets of alignment orientations are considered. More generally, we assume that a graph is given on the points, and only the alignments of points that are connected in the graph count. We show that for planar graphs the problem is NP-hard, and we provide an inapproximability result for general graphs. For the case of trees and planar graphs, we give approximation algorithms whose performance depends on the shape of the given regions and the set of orientations. When the orientations are the ones given by the axes and the regions are axis-parallel rectangles, we obtain a polynomial time approximation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Avelar and M. Müller. Generating topologically correct schematic maps. In Proc. 9th Internat. Symp. on Spatial Data Handling, pages 4a.28–4a.35, 2000.

  2. B. S. Baker (1994) ArticleTitleApproximation algorithms for NP-complete problems on planar graphs J. Assoc. Comput. Mach. 41 153–180 Occurrence Handle0807.68067 Occurrence Handle1369197

    MATH  MathSciNet  Google Scholar 

  3. T. Barbowsky, L. J. Latecki, and K. Richter. Schematizing maps: simplification of geographic shape by discrete curve evolution. In Spatial Cognition II, pages 41–48. Volume 1849 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, 2000.

  4. S. Cabello, M. de Berg, S. van Dijk, M. van Kreveld, and T. Strijk. Schematization of road networks. In Proc. 17th Annual ACM Symp. on Computational Geometry, pages 33–39, 2001.

  5. K. Daniels V. J. Milenkovic (199) ArticleTitleMultiple translational containment, part I: an approximate algorithm Algorithmica 19 148–182 Occurrence Handle10.1007/PL00014415 Occurrence Handle1454908

    Article  MathSciNet  Google Scholar 

  6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications, 2nd edition. Springer-Verlag, Berlin, 2000.

  7. G. {Di Battista}, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing}. Prentice-Hall, Upper Saddle River, NJ, 1999.

  8. D. Elroi. Schematic views of networks: why not have it all. In Proc. 1991 GIS for Transportation Symp., pages 59–76. http://www.elroi.com/fr2_publications.html, 1991.

  9. H. N. Gabow (1995) ArticleTitleA matroid approach to finding edge connectivity and packing arborescences J. Comput. Systems Sci. 50 259–273 Occurrence Handle0827.68087 Occurrence Handle10.1006/jcss.1995.1022 Occurrence Handle1330257

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Grossi E. Lodi (1998) ArticleTitleSimple planar graph partition into three forests Discrete Appl. Math. 84 121–132 Occurrence Handle0907.05019 Occurrence Handle10.1016/S0166-218X(98)00007-9 Occurrence Handle1626570

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Håstad (2001) ArticleTitleSome optimal inapproximability results J. Assoc. Comput. Mach. 48 798–859 Occurrence Handle1127.68405

    MATH  Google Scholar 

  12. R. Heckmann and T. Lengauer. Computing upper and lower bounds on textile nesting problems. In Proc. 4th Annual European Symp. on Algorithms, pages 392–405. Volume 1136 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

  13. D. S. Hochbaum W. Maass (1985) ArticleTitleApproximation schemes for covering and packing problems in image processing and VLSI J. Assoc. Comput. Mach. 32 130–136 Occurrence Handle0633.68027 Occurrence Handle832335

    MATH  MathSciNet  Google Scholar 

  14. D. Lichtenstein (1982) ArticleTitlePlanar formulae and their uses SIAM J. Comput. 11 329–343 Occurrence Handle0478.68043 Occurrence Handle10.1137/0211025 Occurrence Handle652906

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Neyer. Line simplication with restricted orientations. In Algorithms and Data Structures, WADS ‘99, pages 13–24. Volume 1663 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1999.

  16. J. O’Rourke. Visibility. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 25, pages 467–480. CRC Press LLC, Boca Raton, FL, 1997.

  17. M. Sharir. Algorithmic motion planning. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 40, pages 733–754. CRC Press LLC, Boca Raton, FL, 1997.

  18. E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor, New Results and New Trends in Computer Science, pages 359–370. Volume 555 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1991.

  19. A. Wolff and T. Strijk. The map-labeling bibliography. http://www.math-inf.uni-greifswald.de/map-labeling/bibliography/, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergio Cabello or Marc van Kreveld.

Additional information

Communicated by B. Chazelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabello, S., van Kreveld, M. Approximation Algorithms for Aligning Points. Algorithmica 37, 211–232 (2003). https://doi.org/10.1007/s00453-003-1033-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-003-1033-6

Navigation