Computer Science - Research and Development

, Volume 33, Issue 1–2, pp 135–143 | Cite as

Smart grid co-simulation with MOSAIK and HLA: a comparison study

  • C. SteinbrinkEmail author
  • A. A. van der Meer
  • M. Cvetkovic
  • D. Babazadeh
  • S. Rohjans
  • P. Palensky
  • S. Lehnhoff
Special Issue Paper


Evaluating new technological developments for energy systems is becoming more and more complex. The overall application environment is a continuously growing and interconnected cyber-physical system so that analytical assessment is practically impossible to realize. Consequently, new solutions must be evaluated in simulation studies. Due to the interdisciplinarity of the simulation scenarios, various heterogeneous tools must be connected. This approach is known as co-simulation. During the last years, different approaches have been developed or adapted for applications in energy systems. In this paper, two co-simulation approaches are compared that follow generic, versatile concepts. The tool mosaik, which has been explicitly developed for the purpose of co-simulation in complex energy systems, is compared to the High Level Architecture (HLA), which possesses a domain-independent scope but is often employed in the energy domain. The comparison is twofold, considering the tools’ conceptual architectures as well as results from the simulation of representative test cases. It suggests that mosaik may be the better choice for entry-level, prototypical co-simulation while HLA is more suited for complex and extensive studies.


Co-simulation mosaik HLA Cyber-physical energy systems 



This work is supported by the European Communitys Horizon 2020 Program (H2020/2014-2020) under project “ERIGrid” (Grant Agreement No. 654113).


  1. 1.
    Schlögl F, Rohjans S, Lehnhoff S, Velasquez J, Steinbrink C, Palensky P (2015) International symposium on smart electric distribution systems and technologies (EDST). IEEE, pp 516–521Google Scholar
  2. 2.
    Lin H, Sambamoorthy S, Shukla S, Thorp J, Mili L (2011) IEEE PES innovative smart grid technologies (ISGT). IEEEGoogle Scholar
  3. 3.
    Godfrey T, Mullen S, Griffith DW, Golmie N, Dugan RC, Rodine C (2010) First IEEE international conference on smart grid communications (SmartGridComm)Google Scholar
  4. 4.
    Georg H, Müller SC, Dorsch N, Rehtanz C, Wietfeld C (2013) IEEE international conference on smart grid communications (SmartGridComm). IEEE, pp 576–581Google Scholar
  5. 5.
    Mets K, Verschueren T, Develder C, Vandoorn TL, Vandevelde L (2011) IEEE 16th international workshop on computer aided modeling and design of communication links and networks (CAMAD). IEEE, pp 61–65Google Scholar
  6. 6.
    Ptolemaeus C (ed) (2014) System design, modeling, and simulation using Ptolemy II. Ptolemy.orgGoogle Scholar
  7. 7.
    Wetter M (2011) Co-simulation of building energy and control systems with the Building Controls Virtual Test Bed. J Build Perform Simul 4(3):185CrossRefGoogle Scholar
  8. 8.
    Dahmann JS, Fujimoto RM, Weatherly RM (1997) Proceedings of the 29th conference on Winter simulation. IEEE Computer Society, pp 142–149Google Scholar
  9. 9.
    Neema H, Sztipanovits J, Burns M, Griffor E (2016) Workshop on modeling and simulation of cyber-physical energy systems (MSCPES). IEEEGoogle Scholar
  10. 10.
    Schütte S, Scherfke S, Tröschel M (2011) IEEE first international workshop on smart grid modeling and simulation (SGMS). IEEE, pp 55–60Google Scholar
  11. 11.
    Rohjans S, Lehnhoff S, Schütte S, Scherfke S, Hussain S (2013) 4th IEEE/PES innovative smart grid technologies Europe (ISGT EUROPE). IEEEGoogle Scholar
  12. 12.
    Palensky P, Van Der Meer AA, López CD, Joseph A, Pan K (2017) Cosimulation of intelligent power systems: fundamentals, software architecture, numerics, and coupling. IEEE Ind Electron Mag 11(1):34CrossRefGoogle Scholar
  13. 13.
    Blochwitz T, Otter M, Arnold M, Bausch C, Clauß C, Elmqvist H, Junghanns A, Mauss J, Monteiro M, Neidhold T, Neumerkel D, Olsson H, Peetz JV, Wolf S (2009) 8th international modelica conference, pp 173–184Google Scholar
  14. 14.
    Widl E, Müller W, Elsheikh A, Hörtenhuber M, Palensky P (2013) Workshop on modeling and simulation of cyber-physical energy systems (MSCPES)Google Scholar
  15. 15.
    Schütte S (2013) Simulation model composition for the large-scale analysis of smart grid control mechanisms. Ph.D. Carl von Ossietzky University of OldenburgGoogle Scholar
  16. 16.
    Rohjans S, Widl E, Müller W, Schütte S, Lehnhoff S (2014) Gekoppelte simulation komplexer energiesysteme mittels mosaik und FMI. At-Automatisierungstechnik 62(5):325CrossRefGoogle Scholar
  17. 17.
    van der Meer AA, Palensky P, Heussen K, Morales Bondy DE, Gehrke O, Steinbrink C, Blank M, Lehnhoff S, Widl E, Moyo C, Strasser TI, Nguyen VH, Akroud N, Syed MH, Emhemed A, Rohjans S, Brandl R, Rohjans AM (2017) Workshop on modeling and simulation of cyber-physical energy systems, Pittsburgh, PAGoogle Scholar
  18. 18.
    Dahmann JS, Fujimoto RM, Weatherly RM (1998) Winter simulation conference. Proceedings (Cat. No. 98CH36274), Washington, DC, vol 1, pp 797–804. doi: 10.1109/WSC.1998.745066
  19. 19.
    IEEE standard for modeling and simulation (M & S) high level architecture (HLA)—object model template (OMT) specification (2000). IEEE Std 1516.2-2000Google Scholar
  20. 20.
    IEEE standard for modeling and simulation (M & S) high level architecture (HLA)—object model template (OMT) specificationGoogle Scholar
  21. 21.
    Noulard E, Rousselot JY, Siron P (2009) Spring simulation interoperability workshop (2009)Google Scholar
  22. 22.
    Sonnenschein M, Appelrath HJ, Lehnhoff S, Mayer C, Uslar M, Nieße A, Tröschel A, Hofmann L, Kurrat M, Mertens A (2012) VDE-Kongress 2012 - Intelligente Energieversorgung der ZukunftGoogle Scholar
  23. 23.
    Brito AV, Negreiros AV (2013) III Brazilian symposium on computing systems engineeringGoogle Scholar
  24. 24.
    Palmintier B, Krishnamurthy D, Top P, Smith S (2017) Workshop on modeling and simulation of cyber-physical energy systems, Pittsburgh, PAGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. Steinbrink
    • 1
    Email author
  • A. A. van der Meer
    • 2
  • M. Cvetkovic
    • 2
  • D. Babazadeh
    • 1
  • S. Rohjans
    • 3
  • P. Palensky
    • 2
  • S. Lehnhoff
    • 1
  1. 1.OFFIS – Institute for Information TechnologyOldenburgGermany
  2. 2.Delft University of TechnologyDelftThe Netherlands
  3. 3.Hamburg University of Applied SciencesHamburgGermany

Personalised recommendations