Including a virtual battery storage into thermal unit commitment

Abstract

This research-in-progress paper investigates the concept of a virtual battery storage and its integration into the unit commitment of the conventional and pumped-storage hydro power plant fleet in Germany after the nuclear phase-out in 2023. The study suggests that the efficiency of power supply with conventional power plants increases by substituting pumped-storage hydro power plants with a virtual battery storage, which is pointed out by decreasing operation of conventional power plants, costs and CO\(_2\) emissions. Additionally, the paper shows a conflict between efficient storages and gas power plants, since batteries allow to store cheap power from base load power plants with high CO\(_2\) emissions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Sonnenschein M, Tröschel M, Lünsdorf O. Smart grids for optimised utilisation of renewable energy supply. In: Environmental informatics and renewable energies—27th international conference on informatics for environmental protection, vol 137, pp 178–187

  2. 2.

    Madlener R, Specht JM (2013) An exploratory economic analysis of underground pumped-storage hydro power plants in abandoned coal mines. In: SSRN Electronic Journal, vol 2

  3. 3.

    Pruckner M (2015) Ein Simulationsmodell für den Energieumstieg in Bayern. Ph.D. dissertation, Friedrich-Alexander-Universität

  4. 4.

    Leepa C, Kufner A, Mehl S, Steber D, Veerashekar K, Sigert I, Götz K, German R, Grimm V, Luther M (2016) SWARM-successful provision of frequency containment reserve with distibuted energy storage systems. In: 10th international renewable energy storage conference (IRES 2016), Düsseldorf, Germany

  5. 5.

    Bazan P, Pruckner M, Steber D, German R (2015) Hierarchical Simulation of the German energy system and houses with PV and storage systems. In: Gottwalt S, König L, Schmeck H (eds) Energy Informatics. Lecture Notes in Computer Science, vol 9424. Springer, Cham

  6. 6.

    Pruckner M, German R (2013) A hybrid simulation model for large-scaled electricity generation systems. In: Pasupathy R, Kim S, Tolk A, Hill R, Kuhl M (eds) Proceedings of the 2013 winter simulation conference

  7. 7.

    Pruckner M, Eckhoff D, German R (2014) Modeling country-scale electricity demand profiles. In: Winter simulation conference (WSC ’14), Savannah, pp 1084–1095

  8. 8.

    Pruckner M, German R (2014) Modeling and simulation of electricity generated by renewable energy sources for complex energy systems. In: Proceedings of the 47th annual simulation symposium (ANSS ’14) at spring simulation multi-conference (SpringSim ’14)

  9. 9.

    Pruckner M (2016) Modeling the impact of electrical energy storage systems on future power systems. In: Electrical power and energy conference (EPEC), 2016 IEEE, pp. 1–7

  10. 10.

    German Federal Network Agency. https://www.bundesnetzagen tur.de/DE/Sachgebiete/ElektrizitaetundGas/UnternehmenInstituti onen/Versorgungssicherheit/Erzeugungskapazitaeten/Kraftwerks liste/kraftwerksliste-node.html

  11. 11.

    Schäfer B, Matthiae M, Timme M, Witthaut D (2015) Decentral smart grid control. New J Phys 17:015002

    Article  Google Scholar 

  12. 12.

    Steber D, Bazan P, German R (2015) SWARM-increasing household’s internal PV consumption and offering primary control power with distributed batteries. In: Gottwalt S, König L, Schmeck H (eds) Energy informatics-4th D-A-CH conference, EI 2015, Karlsruhe, 2015, Proceedings. Springer, Cham

  13. 13.

    Steber D, Bazan P, German R (2015) SWARM-increasing households internal PV consumption and offering primary control power with distributed batteries. In: Lecture Notes in Computer Science (LNCS), Karlsruhe, Germany

  14. 14.

    Steber D, Bazan P, German R (2016) SWARM-Primärregelleistungserbringung mit verteilten Batteriespeichern in Haushalten. In: 14 Symposium energieinnovation 2016, Graz, Österreich

  15. 15.

    Steber D, Bazan P, German R (2016) SWARM-strategies for providing primary control power with distributed battery storage systems. In: IEEE energycon 2016, Leuven, Belgium

  16. 16.

    Megel O, Mathieu J, Andersson G (2014) Scheduling distributed energy storage units to provide multiple services. In: Power systems computation conference (PSCC), 2014, Wroclaw, Poland, pp 1–7

  17. 17.

    Etherden N, Bollen MHJ, Lundkvist J (2013) Quantification of ancillary services from a virtual power plant in an existing subtransmision network. In: IEEE PES ISGT Europe 2013, pp 1–5

  18. 18.

    Wienböker J, Moeller M, Gersch R (2015) European Patent Application 15182216.0: System und Verfahren zur Erbringung einer Regelleistung für ein Stromnetz - Caterva GmbH, 24.08.2015, Patent

  19. 19.

    Schlund J, German R (2017) A control algorithm for a heterogeneous virtual battery storage providing FCR power. In: Proceedings of the 2017 international conference on smart grid and smart cities

  20. 20.

    Schröder A, Kunz F, Meiss J, Mendelevitch R, von Hirschhausen C (2013) DIW data documentation-current and prospective costs of electricity generation until 2050. German Institute for Economic Research (DIW Berlin), Berlin, Germany, Tech. Rep

  21. 21.

    Carrion M, Arroyo JM A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. In: IEEE transactions on power systems

  22. 22.

    van den Bergh K, Bruninx K, Delarue E, Haeseleer W (2014) A mixed-integer linear formulation of the unit commitment problem. In: TME working paper-energy and environment. KULeuven Energy Institute

  23. 23.

    Morales-Espana G, Latorre JM, Ramos A (2013) Tight and compact milp formulation for the thermal unit commitment problem. IEEE Trans Power Syst 28(4):4897–4908

    Article  Google Scholar 

  24. 24.

    Arroyo JM, Conejo AJ (2000) Optimal response of a thermal unit to an electricity spot market. IEEE Trans Power Syst 15(3):1098–1104

  25. 25.

    Takriti S, Rajan D (2005) Minimum up/down polytopes of the unit commitment problem with start-up costs. In: IBM research report

  26. 26.

    Gurobi Optimization, Gurobi optimizer reference manual (2016). https://www.gurobi.com/documentation/7.0/refman/index.html

  27. 27.

    ENTSO-E -European Network of Transmission System Operators for Electricity, 10-year network development plan market modeling data (2016)

  28. 28.

    SMA Solar Technology AG (2015) Kompaktspeicher: Placebo oder Zukunftslösung? Ergebnisse aus einem Jahr Felderfahrung. http://www.sma-sunny.com/wp-content/uploads/2015/04/Abb5_Leistungsabh%C3%A4ngige-Wirkungsgrade-Labormessungen.jpg

Download references

Acknowledgements

This research took place in the project Combined Optimization, Simulation and Net Analysis of the German Electric Energy System in an European Context (KOSiNeK) (Project No. 03ET4035) and has been funded by the 6th energy research program of the Federal Ministry of Economics and Technology of Germany (BMWi).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Steber.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steber, D., Pruckner, M., Schlund, J. et al. Including a virtual battery storage into thermal unit commitment. Comput Sci Res Dev 33, 223–229 (2018). https://doi.org/10.1007/s00450-017-0362-7

Download citation

Keywords

  • Energy networks
  • Virtual power plant
  • Distributed generation management
  • Grid integration of storage
  • Virtual battery storage
  • CO\(_2\) emissions