Skip to main content

Advertisement

Log in

Provision of frequency containment reserve with an aggregate of air handling units

Computer Science - Research and Development

Abstract

Following political strategy changes with the goal to reduce greenhouse gas emissions, the German power system has experienced a great penetration of intermittent renewable energy sources. The volatile electricity generation of renewable energy sources requires greater flexibility not only on the electricity supply but also on the demand side. The ventilation of buildings represents a largely untapped resource for demand response measures such as control reserve. Due to the quick reaction speed and inertia of the air balance of supplied buildings, electric motors of air handling units qualify to provide frequency containment reserve. In this paper we present a system architecture according to standards by the German transmission system operators to provide frequency containment reserve with an aggregate of air handling units. At an industrial site containing workshop and office buildings a prototype of the system has been installed and prequalified by the transmission system operators to provide almost 300 kW of frequency containment reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ali M, Safdarian A, Lehtonen M (2014) Demand response potential of residential HVAC loads considering users preferences. In: IEEE PES innovative smart grid technologies, Europe, pp 1–6

  2. Barooah P, Buic A, Meyn S (2015) Spectral decomposition of demand-side flexibility for reliable ancillary services in a smart grid. In: IEEE (HICSS), 2015 48th Hawaii international conference on system sciences, pp 2700–2709

  3. Callaway DS, Hiskens IA (2011) Achieving controllability of electric loads. Proc IEEE 99(1):184–199

    Article  Google Scholar 

  4. Consentec GmbH (2014) Beschreibung von Regelleistungskonzepten und Regelleistungsmarkt

  5. ENTSOE (2009) Operation handbook, P1 policy 1: load-frequency control and performance [C]

  6. Fleer J, Stenzel P (2016) Impact analysis of different operation strategies for battery energy storage systems providing primary control reserve. J Energy Storage 8:320–338

    Article  Google Scholar 

  7. Galus MD, Koch S, Andersson G (2011) Provision of load frequency control by PHEVs, controllable loads, and a cogeneration unit. IEEE Trans Ind Electron 58(10):4568–4582

    Article  Google Scholar 

  8. Glau, M (2016) Regelleistung aus Wind. Systemdienstleistungen für das Stromnetz bis 2030 die Rolle von Kleinanlagen und Erneuerbare Energien-Anlagen am Energieforschungszentrum Niedersachsen

  9. Gobmaier T (2017) Netzfrequenz als Indikator für die Stabilität des Verbundnetzes. In: 10 Internationale Energiewirtschaftstagung an der TU Wien (IEWT 2017)

  10. Hao H, Kowli A, Lin Y, Barooah P, Meyn S (2013) Ancillary service for the grid via control of commercial building hvac systems. In: IEEE on American control conference (ACC), 2013, pp 467–472

  11. Kim YJ, Norford LK, Kirtley JL (2015) Modeling and analysis of a variable speed heat pump for frequency regulation through direct load control. IEEE Trans Power Syst 30(1):397–408

    Article  Google Scholar 

  12. Koliou E, Eid C, Chaves-vila JP, Hakvoort RA (2014) Demand response in liberalized electricity markets: analysis of aggregated load participation in the German balancing mechanism. Energy 71:245–254

    Article  Google Scholar 

  13. Lin Y, Barooah P, Meyn S, Middelkoop T (2015) Experimental evaluation of frequency regulation from commercial building HVAC systems. IEEE Trans Smart Grid 6(2):776–783

    Article  Google Scholar 

  14. Lu N, Zhang Y (2013) Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves. IEEE Trans Smart Grid 4(2):914–921

    Article  Google Scholar 

  15. Makarov YV, Loutan C, Ma J, Mello Pd (2009) Operational impacts of wind generation on California power systems. IEEE Trans Power Syst 24(2):1039–1050

    Article  Google Scholar 

  16. Motegi N, Piette MA, Watson DS, Kiliccote S, Xu P (2007) Introduction to commercial building control strategies and techniques for demand response. Lawrence Berkeley National Laboratory LBNL-59975

  17. Oldewurtel F, Borsche T, Bucher M, Fortenbacher P, Haring MGVT, Haring T, Mathieu JL, Mgel O, Vrettos E, Andersson G (2013) A framework for and assessment of demand response and energy storage in power systems. In: IEEE 2013 IREP symposium bulk power system dynamics and control-IX optimization, security and control of the emerging power grid (IREP), pp 1–24

  18. Perfumo C, Kofman E, Braslavsky JH, Ward JK (2012) Load management: model-based control of aggregate power for populations of thermostatically controlled loads. Energy Converv Manag 55:36–48

    Article  Google Scholar 

  19. Regelleistungnet (2016) Internetplattform zur Vergabe von Regelleistung

  20. Verband der Netzbetreiber (2016) Eckpunkte und Freiheitsgrade bei Erbringung von Primaerregelleistung

  21. Vrettos E, Koch S, Andersson G (2012) Load frequency control by aggregations of thermally stratified electric water heaters. In: 2012 3rd IEEE pes innovative smart grid technologies Europe (ISGT Europe), pp 1–8

  22. Vrettos E, Oldewurtel F, Zhu F, Andersson G (2014) Robust provision of frequency reserves by office building aggregations. IFAC Proc 47(3):12068–12073

    Article  Google Scholar 

  23. Zhao C, Topcu U, Li N, Low S (2014) Design and stability of load-side primary frequency control in power systems. IEEE Trans Autom Control 59(5):1177–1189

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhao P, Henze G, Brandemuehl M, Cushing V, Plamp S (2015) Dynamic frequency regulation resources of commercial buildings through combined building system resources using a supervisory control methodology. Energy Build 86:137–150

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the BMW Group for the possibility to carry out the joint research project SmartFlex. In particular, the authors are grateful to Michael Müller-Ruff and Dr. Michael Beer for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Rominger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rominger, J., Kern, F. & Schmeck, H. Provision of frequency containment reserve with an aggregate of air handling units. Comput Sci Res Dev 33, 215–221 (2018). https://doi.org/10.1007/s00450-017-0361-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-017-0361-8

Keywords

Navigation