Advertisement

Computer Science - Research and Development

, Volume 33, Issue 1–2, pp 185–191 | Cite as

Exploiting flexibility in smart grids at scale

The resource utilization scheduling heuristic
  • Lukas Barth
  • Dorothea Wagner
Special Issue Paper
  • 262 Downloads

Abstract

Large parts of the worldwide energy system are undergoing drastic changes at the moment. Two of these changes are the increasing share of intermittent generation technologies and the advent of the smart grid. A possible application of smart grids is demand response, i.e., the ability to influence and control power demand to match it with fluctuating generation. We present a heuristic approach to coordinate large amounts of time-flexible loads in a smart grid with the aim of peak shaving with a focus on algorithmic efficiency. A practical evaluation shows that our approach scales to large instances and produces results that come close to optimality.

Keywords

Smart grids Demand response Scheduling Heuristics 

References

  1. 1.
    Allerding F, Mauser I, Schmeck H (2014) Customizable energy management in smart buildings using evolutionary algorithms. Springer, Berlin, pp 153–164. doi: 10.1007/978-3-662-45523-4_13 Google Scholar
  2. 2.
    Ashok S (2006) Peak-load management in steel plants. Appl Energy 83(5):413–424. doi: 10.1016/j.apenergy.2005.05.002 CrossRefGoogle Scholar
  3. 3.
    Chuzhoy J, Guha S, Khanna S, Naor JS (2004) Machine minimization for scheduling jobs with interval constraints. In: 45th annual IEEE symposium on foundations of computer science, pp 81–90. doi: 10.1109/FOCS.2004.38
  4. 4.
    Cieliebak M, Erlebach T, Hennecke F, Weber B, Widmayer P (2004) Scheduling with release times and deadlines on a minimum number of machines. Springer, Boston, pp 209–222. doi: 10.1007/1-4020-8141-3_18 zbMATHGoogle Scholar
  5. 5.
    Deckro RF, Hebert JE (1989) Resource constrained project crashing. Omega 17(1):69–79. doi: 10.1016/0305-0483(89)90022-4 CrossRefGoogle Scholar
  6. 6.
    Earle R, Kahn EP, Macan E (2009) Measuring the capacity impacts of demand response. Electr J 22(6):47–58. doi: 10.1016/j.tej.2009.05.014 CrossRefGoogle Scholar
  7. 7.
    Fang X, Misra S, Xue G, Yang D (2012) Smart grid the new and improved power grid: a survey. IEEE Commun Surv Tutor 14(4):944–980. doi: 10.1109/SURV.2011.101911.00087 CrossRefGoogle Scholar
  8. 8.
    Gottwalt S, Grttner J, Schmeck H, Weinhardt C (2016) Modeling and valuation of residential demand flexibility for renewable energy integration. IEEE Trans Smart Grid PP(99):1–10. doi: 10.1109/TSG.2016.2529424 Google Scholar
  9. 9.
    Guldemond TA, Hurink JL, Paulus JJ, Schutten JMJ (2008) Time-constrained project scheduling. J Sched 11(2):137–148. doi: 10.1007/s10951-008-0059-7 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kolter JZ, Johnson, MJ (2011) Redd: a public data set for energy disaggregation research. In: SustKDDGoogle Scholar
  11. 11.
    Li Y, Ng BL, Trayer M, Liu L (2012) Automated residential demand response: algorithmic implications of pricing models. IEEE Trans Smart Grid 3(4):1712–1721. doi: 10.1109/TSG.2012.2218262 CrossRefGoogle Scholar
  12. 12.
    Mitra S, Grossmann IE, Pinto JM, Arora N (2012) Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes. Comput Chem Eng 38:171–184. doi: 10.1016/j.compchemeng.2011.09.019 CrossRefGoogle Scholar
  13. 13.
    Pedrasa MAA, Spooner TD, MacGill IF (2010) Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans Smart Grid 1(2):134–143. doi: 10.1109/TSG.2010.2053053 CrossRefGoogle Scholar
  14. 14.
    Petersen MK, Hansen LH, Bendtsen J, Edlund K, Stoustrup J (2014) Heuristic optimization for the discrete virtual power plant dispatch problem. IEEE Trans Smart Grid 5(6):2910–2918. doi: 10.1109/TSG.2014.2336261 CrossRefGoogle Scholar
  15. 15.
    Pritsker AAB, Waiters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one programming approach. Manag Sci 16(1):93–108Google Scholar
  16. 16.
    Siano P (2014) Demand response and smart grids a survey. Renew Sustain Energy Rev 30:461–478. doi: 10.1016/j.rser.2013.10.022 CrossRefGoogle Scholar
  17. 17.
    US Department of Energy (2006) Benefits of demand response in electricity markets and recommendations for achieving themGoogle Scholar
  18. 18.
    Yaw S, Mumey B, McDonald E, Lemke J (2014) Peak demand scheduling in the smart grid. In: 2014 IEEE international conference on smart grid communications (SmartGridComm), pp 770–775. doi: 10.1109/SmartGridComm.2014.7007741
  19. 19.
    Zibelman A, Krapels EN (2008) Deployment of demand response as a real-time resource in organized markets. Electr J 21(5):51–56. doi: 10.1016/j.tej.2008.05.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations