Advertisement

Computer Science - Research and Development

, Volume 33, Issue 1–2, pp 177–183 | Cite as

A market-based smart grid approach to increasing power grid capacity without physical grid expansion

  • Joachim Bagemihl
  • Frank Boesner
  • Jens Riesinger
  • Michael Künzli
  • Gwendolin Wilke
  • Gabriela Binder
  • Holger Wache
  • Daniel Laager
  • Jürgen Breit
  • Michael Wurzinger
  • Juliana Zapata
  • Silvia Ulli-Beer
  • Vincent Layec
  • Thomas Stadler
  • Franz Stabauer
Special Issue Paper

Abstract

The continuous increase of competitiveness of renewable energy in combination with the necessity of fossil fuel substitution leads to further electrification of the global energy system and therefore a need for large-scale power grid capacity increase. While physical grid expansion is not feasible for many countries, grid-driven energy management in the Smart Grid often interferes in customer processes and free access to the energy market. The paper solves this dilemma by proposing a market-based load schedule management approach that increases power grid capacity without physical grid expansion. This is achieved by allocating for a certain class of non-critical flexible loads called “conditional loads” the currently unused grid capacity dedicated to ensuring \(\hbox {N}-1\) security of supply whereas this security level remains untouched for all critical processes. The paper discusses the necessary processes and technical and operational requirements to operate such a system.

Keywords

Power networks Smart grid Renewable energy Power network capacity 

Notes

Acknowledgements

The research has received funding from the ERA-Net Smart Grids Plus initiative, with support from the European Union’s Horizon 2020 research and innovation program. It is also part of the activities of SCCER CREST, which is financially supported by the Swiss Commission for Technology and Innovation (CTI).

References

  1. 1.
    Bakker V, Bosman MGC, Molderink A, Hurink JL, Smit GJM (2010) Demand side load management using a three step optimization methodology. IEEE, pp 431–436Google Scholar
  2. 2.
    BDEW (2015) Smart Grids Ampelkonzept: Ausgestaltung der gelben Phase. BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. BerlinGoogle Scholar
  3. 3.
    Bharathi C, Rekha D, Vijayakumar V (2017) Genetic algorithm based demand side management for smart grid. Wirel Pers Commun 93(2):481–502CrossRefGoogle Scholar
  4. 4.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197Google Scholar
  5. 5.
    Eby P (2010) The simplest(?) way to do tree-based queries in SQL. https://dirtsimple.org/2010/11/simplest-way-to-do-tree-based-queries.html
  6. 6.
    Ferhatbegovic T, Hauer S, Zucker G (2014) Methodology for deploying model based control concepts for load shaping in the non-residential building sector. In: Industrial Electronics Society, IECON 2013-39th annual conference of the IEEE, pp 5735–5740Google Scholar
  7. 7.
    Karthikeyan R, Parvathy A (2015) Peak load reduction in micro smart grid using non-intrusive load monitoring and hierarchical load scheduling. In: International conference on smart sensors and systems (IC-SSS), pp 1–6Google Scholar
  8. 8.
    Logenthiran T, Srinivasan D, Shun TZ (2012) Demand side management in smart grid using heuristic optimization. IEEE Trans Smart Grid 3(3):1244–1252Google Scholar
  9. 9.
    Marwan M, Kamel F (2011) Demand side response to mitigate electrical peak demand in eastern and southern Australia. Energy Procedia 12:133–142Google Scholar
  10. 10.
    Mennel T, Hger U, Grote D, Itschert L, Kays J, Seack A, Werner O (2015) Kosten-Nutzen-Analyse einerAmpellosung fur den Strommarkt der Schweiz. In: Studie im Auftrag des Bundesamt für Energie (BFE). KEMA Consulting GmbHGoogle Scholar
  11. 11.
    Molderink A, Bakker V, Bosman MGC, Hurink JL, Smit GJM (2010) Management and control of domestic smart grid technology. IEEE Trans Smart Grid 1(2):109–119Google Scholar
  12. 12.
    Monigatti P, Apperley M, Rogers B (2010) Power and energy visualization for the micro-management of household electricity consumption. In: AVI’10 Proceedings of the international conference on advanced visual interfaces, pp 325–328Google Scholar
  13. 13.
    Nghiem TX, Behl M, Mangharam R, Pappas GJ (2011) Green scheduling of control systems for peak demand reduction. In: 50th IEEE conference on decision and control and European control conference, CDC-ECC 2011. IEEE, pp 5131–5136Google Scholar
  14. 14.
    Ramchurn SD, Vytelingum P, Rogers A, Jennings N (2011) Agent-based control for decentralised demand side management in the smart grid. In: Proceeding of AAMAS’11-the 10th international conference on Autonomous Agents and Multiagent Systems, vol 1, pp 5–12Google Scholar
  15. 15.
    RWE Deutschland AG: Kisselbach ist Energiewende-Dorf: Intelligentes Stromnetz realisiert. http://www.rwe.com/web/cms/de/37110/rwe/presse-news/pressemitteilungen/pressemitteilungen/?pmid=4011940. Accessed 22 Aug 2017
  16. 16.
    Shi W, Li N, Xie X, Chu CC, Gadh R (2014) Optimal residential demand response in distribution networks. IEEE J Sel Areas Commun 32(7):1441–1450Google Scholar
  17. 17.
    Suman S, Katiyar R, Vijayvargiya A, Jain P, Bhakar R (2016) An optimally controlled charging scheme motivating EV owners for supporting grid stability. In: National power systems conference (NPSC). IEEE, pp 1–6Google Scholar
  18. 18.
    Torriti J (2012) Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in northern Italy. Energy 44(1):576–583Google Scholar
  19. 19.
    Volk K, Rupp L, Konermann M (2017) Grid-control: Optimiertes Eng passmanagement durch dynamischen-quotenbasierten Netzampelansatz. Netze BW GmbH, StuttgartGoogle Scholar
  20. 20.
    Zhu T, Huang Z, Sharma A, Su J, Irwin D, Mishra A, Menasche D, Shenoy P (2013) Sharing renewable energy in smart microgrids. In: International conference on Cyber-Physical Systems (ICCPS), 2013 ACM/IEEE. IEEE, pp 219–228Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Joachim Bagemihl
    • 2
  • Frank Boesner
    • 2
  • Jens Riesinger
    • 2
  • Michael Künzli
    • 3
  • Gwendolin Wilke
    • 1
  • Gabriela Binder
    • 1
  • Holger Wache
    • 3
  • Daniel Laager
    • 4
  • Jürgen Breit
    • 5
  • Michael Wurzinger
    • 6
  • Juliana Zapata
    • 6
  • Silvia Ulli-Beer
    • 6
  • Vincent Layec
    • 3
  • Thomas Stadler
    • 8
  • Franz Stabauer
    • 7
  1. 1.Lucerne University of Applied Sciences and ArtsRotkreuzSwitzerland
  2. 2.Alpiq AGOltenSwitzerland
  3. 3.University of Applied Sciences and Arts Northwestern SwitzerlandOltenSwitzerland
  4. 4.EBM (Genossenschaft Elektra Birseck)MünchensteinSwitzerland
  5. 5.Stadtwerke CrailsheimCrailsheimGermany
  6. 6.ZHAW Zurich University of Applied SciencesWinterthurSwitzerland
  7. 7.ASKI Industrie-Elektronik GmbHZell am MoosAustria
  8. 8.Xamax AGOltenSwitzerland

Personalised recommendations