Using locally produced photovoltaic energy to charge electric vehicles


Mobility in Switzerland currently consumes about 35% of the total energy demand. While internal combustion engines still generate most of it, the increasing number of electric vehicles changes the landscape by decoupling energy production from consumption. This allows using more sustainable energy sources, such as photovoltaics (PV), hydroelectric power plants or wind turbines. In the past years, the number of PV installations has grown rapidly in Switzerland. It is expected that PV has the highest growth potential of all renewable energy sources. Solar panels are especially interesting, as they can be installed on most buildings, which distributes the electricity production. However, due to frequent fluctuations in production, PV poses a challenge for the existing power grid. It is unclear to what extent PV production can be increased without the need for extensions of the power grid, such as additional transmission lines or storage capabilities. Electric vehicles could be used to consume fluctuating electricity production. In this paper, we study the effects of using locally produced photovoltaic power to recharge electric vehicles of commuters in individual Swiss municipalities. Such an analysis not only gives us indications of the potentials and limits of using photovoltaics to satisfy mobility energy demands, but can also be used to better direct subsidies and plan the electrical grid.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.


  2. 2.

  3. 3.

  4. 4.

  5. 5.


  1. 1.

    Ballou RH, Rahardja H, Sakai N (2002) Selected country circuity factors for road travel distance estimation. Transp Res Part A Policy Pract 36(9):843–848. doi:10.1016/S0965-8564(01)00044-1.

  2. 2.

    Buffat R (2016) Feature-aware surface interpolation of rooftops using low-density lidar data for photovoltaic applications. Springer, Cham, pp 337–350. doi:10.1007/978-3-319-33783-8_19

    Google Scholar 

  3. 3.

    Buffat R, Grassi S, Raubal M (2017) Solar potential in Swizerland. Appl Energy (Under review)

  4. 4.

    Bundesamt für Energie BFE (2016) Schweizerische Gesamtenergiestatistik 2015

  5. 5.

    Clark WA, Huang Y, Withers S (2003) Does commuting distance matter?: commuting tolerance and residential change. Reg Sci Urban Econ 33(2):199–221. doi:10.1016/S0166-0462(02)00012-1.

  6. 6.

    Connolly D, Lund H, Mathiesen B (2016) Smart Energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew Sustain Energy Rev 60:1634–1653. doi:10.1016/j.rser.2016.02.025.

  7. 7.

    Denholm P, Kuss M, Margolis RM (2013) Co-benefits of large scale plug-in hybrid electric vehicle and solar pv deployment. J Power Sources 236:350–356. doi:10.1016/j.jpowsour.2012.10.007.

  8. 8.

    Dessemontet P, Kaufmann V, Jemelin C (2010) Switzerland as a single metropolitan area? A study of its commuting network. Urban Stud 47(13):2785–2802. doi:10.1177/0042098010377371.

  9. 9.

    Drude L, Junior LCP, Rüther R (2014) Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment. Renew Energy 68:443–451. doi:10.1016/j.renene.2014.01.049.

  10. 10.

    Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. Wiley, Hoboken. doi:10.1002/9781118671603

    Google Scholar 

  11. 11.

    Eidgenössisches (2017) Departement für Umwelt,Verkehr. Faktenblatt Energie sparen und Energieeffizienz erhöhen, Energie und Kommunikation UVEK

  12. 12.

    Gennaro MD, Paffumi E, Scholz H, Martini G (2014) GIS-driven analysis of e-mobility in urban areas: an evaluation of the impact on the electric energy grid. Appl Energy 124:94–116. doi:10.1016/j.apenergy.2014.03.003.

  13. 13.

    Gutschner M, Gnos S, Nowak S (2010) Potenzialabschätzung für Sonnenkollektoren im Wohngebäudepark

  14. 14.

    Haklay M, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Comput 7(4):12–18. doi:10.1109/MPRV.2008.80

    Article  Google Scholar 

  15. 15.

    Kymakis E, Kalykakis S, Papazoglou TM (2009) Performance analysis of a grid connected photovoltaic park on the island of crete. Energy Convers Manag 50(3):433–438. doi:10.1016/j.enconman.2008.12.009.

  16. 16.

    Li X, Lopes LAC, Williamson SS (2009) On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy. In: 2009 IEEE power energy society general meeting, pp 1–8. doi:10.1109/PES.2009.5275171

  17. 17.

    Luxen D, Vetter C (2011) Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems, GIS ’11, pp 513–516. ACM, New York, NY, USA . doi:10.1145/2093973.2094062

  18. 18.

    Müller R, Pfeifroth U, Träger-Chatterjee C, Cremer R, Trentmann J, Hollmann R (2015) Surface Solar Radiation Data Set—Heliosat (SARAH) - Edition 1

  19. 19.

    Ordóñez J, Jadraque E, Alegre J, Martínez G (2010) Analysis of the photovoltaic solar energy capacity of residential rooftops in andalusia (spain). Renew Sustain Energy Rev 14(7):2122–2130. doi:10.1016/j.rser.2010.01.001.

  20. 20.

    Pfenninger S, Staffell I (2016) Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114:1251–1265. doi:10.1016/

  21. 21.

    Prillwitz J, Harms S, Lanzendorf M (2007) Interactions between residential relocations, life course events, and daily commute distances. Transp Res Rec J Trans Res Board 2021:64–69. doi:10.3141/2021-08

  22. 22.

    prognos: Die Energieperspektiven für die Schweiz bis 2050 (2012) Energienachfrage und Elektrizitätsangebot in der Schweiz 2000–2050

  23. 23.

    Richardson DB (2013) Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew Sustain Energy Rev 19:247–254. doi:10.1016/j.rser.2012.11.042.

  24. 24.

    Scartezzini JL, Montavon M, Compagnon R (2002) Computer evaluation of the solar energy potential in an urban environment. EuroSun, Bologna

    Google Scholar 

  25. 25.

    Swiss Federal Statistical Office (2013) G7.5.1.1 Verkehrsmittelwahl nach ÖV-Güteklasse des Wohnorts.

  26. 26.

    Swiss Federal Statistical Office (2016) Population and Households Statistics (STATPOP2015).

  27. 27.

    Swiss Federal Statistical Office (2017) Erwerbstätige Pendler/innen (Arbeitspendler/innen) nach Länge und Zeitbedarf für den Arbeitsweg.

  28. 28.

    Tuchschmid M, Halder M (2010) mobitool–Grundlagenbericht: Hintergrund

  29. 29.

    Viry G, Kaufmann V, Widmer ED (2008) Switzerland—Mobility: a life stage issue?. In: Schneider NF, Meil G (eds) Mobile Living Across Europe I. Relevance and diversity of job-related spatial mobility in six European Countries. Barbara Budrich, Leverkusen-Opladen

  30. 30.

    Viry G, Widmer ED, Kaufmann V (2010) Does it matter for us that my partner or I commute?: spatial mobility for job reasons and the quality of conjugal relationships in France, Germany, and Switzerland. Zeitschrift für Familienforschung 22(2):149–170.

  31. 31.

    van Vliet O, Brouwer AS, Kuramochi T, van den Broek M, Faaij A (2011) Energy use, cost and CO2 emissions of electric cars. J Power Sources 196(4):2298–2310. doi:10.1016/j.jpowsour.2010.09.119.

  32. 32.

    Wiginton L, Nguyen H, Pearce J (2010) Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput Environ Urban Syst 34(4):345–357. doi:10.1016/j.compenvurbsys.2010.01.001. Geospatial Cyberinfrastructure

  33. 33.

    Zah R, de Haan P (2012) Chancen und Risiken der Elektromobilität in der Schweiz, vol 59. vdf Hochschulverlag AG

Download references


This research was supported by the Swiss National Science Foundation (SNF) within NRP 71 “Managing energy consumption” and by the Commission for Technology and Innovation (CTI) within the Swiss Competence Center for Energy Research (SCCER) Mobility and FURIES (Future Swiss Electrical Infrastructure).

Author information



Corresponding author

Correspondence to René Buffat.

Additional information

R. Buffat and D. Bucher have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buffat, R., Bucher, D. & Raubal, M. Using locally produced photovoltaic energy to charge electric vehicles. Comput Sci Res Dev 33, 37–47 (2018).

Download citation


  • Energy
  • Mobility
  • Sustainability
  • Photovoltaics
  • Electric vehicles