Incremental development of a co-simulation setup for testing a generation unit controller for reactive power provision

  • Jorge VelasquezEmail author
  • Klaus Piech
  • Sebastian Lehnhoff
  • Lars Fischer
  • Steffen Garske
Special Issue Paper


The German energy perspective is changing at an accelerated pace. This change is due to the high diffusion of decentralized energy resources in the electricity mix. Moreover, the role of these generation units is going beyond the provision of active power, and moving towards the supply of ancillary services for grid stabilization (e.g. frequency control, voltage regulation and reactive power compensation). In addition, there is a continuous increase in the complexity of distribution and transmission grids as the need for automation and Information and Communication Technologies take an important role in the optimized operation of decentralized energy resources. This raises the requirement for sophisticated design and validation methods for the analysis of complex energy systems. An innovative approach in this field is the joint operation of multidisciplinary simulation tools in a coordinated fashion providing realistic environments for introduction of HiL-testing of grid automation components.


Power system simulation Reactive power control Renewable energy sources Smart grids 



The Smart Nord Transferprojekt iQ Intelligente Blindleistungssteuerung für Verteilnetze acknowledges the support of the Lower Saxony Ministry of Science and Culture (MWK) (Grant number VWZN3002).


  1. 1.
    Blank M, Lehnhoff S (2013) Assessing reliability of distributed units with respect to the provision of ancillary services. In: 11th IEEE conference on industrial informatics, INDIN 2013, vol 1, pp 447–452Google Scholar
  2. 2.
    Blank M, Lehnhoff S (2013) A concept for reliability assessment for the provision of ancillary services. In: SMARTGREENS, Proceedings of the 2nd international conference on smart grids and green IT systems, vol 1, pp 1–4Google Scholar
  3. 3.
    BTC (2014) BTC grid agent intelligent feed in of energy.
  4. 4.
    Cabadag RI, Schmidt U, Schegner P (2015) The voltage control for reactive power management by decentralized wind farms. In: PowerTech, 2015 IEEE Eindhoven, vol 1, pp 1–6Google Scholar
  5. 5.
    Dietz R, Breithaupt T, Fuchs F, Garske S, Mertens A, Hofmann L (2014) Challenges of grid integration of distributed generation in the interdisciplinary research project smart nord. Power Electron Distrib Gener Syst (PEDG) 1:1–7Google Scholar
  6. 6.
    DIgSILENT (2016) Digsilent powerfactory technical reference documentation static generator.
  7. 7.
    GmbH D (2015) Digsilent powerfactory version 15—user manual.
  8. 8.
    Lehnhoff S, Klingenberg T, Blank M, Calabria M, Schumacher W (2013) Distributed coalitions for reliable and stable provision of frequency response reserve. In: Proceedings of the IEEE International Workshop on Intelligent Energy Systems, IWIES 2013, vol 1, pp 11–18Google Scholar
  9. 9.
    Martin B, Claassen A, Kube M, Lehnhoff S, Piech K, Rohjans S, Scherfke S, Steinbrink C, Velasquez J, Tempez F, Bouzid Y (2014) Integrated smart grid simulations for generic automation architectures with rt-lab and mosaik. Smart Grid Commun (SmartGridComm) 1:194–199Google Scholar
  10. 10.
    Mets K, Ojea JA, Develder C (2014) Combining power and communication network simulation for cost-effective smart grid analysis. IEEE Commun Surv Tutor 16:1771–1796CrossRefGoogle Scholar
  11. 11.
    Nannen O, Piech K, Lehnhoff S, Rohjans S, Schogl F, Andr F, Strasser T (2015) Low-cost integration of hardware components into co-simulation for future power and energy systems. Ind Electron Soc IECON 1:5304–5309Google Scholar
  12. 12.
    OFFIS (2015) Mosaik documentation, release 2.0.
  13. 13.
    Podmore R, Robinson MR (2010) The role of simulators for smart grid development. IEEE Trans Smart Grid 1:205–212CrossRefGoogle Scholar
  14. 14.
    Rohjans S, Lehnhoff S, Schutte S, Scherfke S, Hussain S (2013) Mosaik—a modular platform for the evaluation of agent-based smart grid control. Innov Smart Grid Technol Eur (ISGT EUROPE) 1:1–5CrossRefGoogle Scholar
  15. 15.
    Schogl F, Rohjans S, Lehnhoff S, Velasquez J, Steinbrink C, Palensky P (2015) Towards a classification scheme for co-simulation approaches in energy systems. Smart Electric Distrib Syst Technol (EDST) 1:516–521Google Scholar
  16. 16.
    Strasser T, Andren F, Kathan J, Cecati C, Buccella C, Siano P, Leitao P, Zhabelova G, Vyatkin V, Vrba P, Marik V (2015) A review of architectures and concepts for intelligence in future electric energy systems. IEEE Trans Ind Electron 62:2424–2438CrossRefGoogle Scholar
  17. 17.
    Wieben E, Kumm T, Hohn E, Rohr M, Stadler M (2014) The 5 approach as building block of an energy system dominated by renewables. Adv New Trends Environ Energy Inform 1:99–113Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jorge Velasquez
    • 1
    Email author
  • Klaus Piech
    • 1
  • Sebastian Lehnhoff
    • 1
  • Lars Fischer
    • 1
  • Steffen Garske
    • 2
  1. 1.OFFIS, Institute for Information TechnologyOldenburgGermany
  2. 2.Leibniz Universität HannoverHannoverGermany

Personalised recommendations