Advertisement

Providing primary frequency control with residential scale photovoltaic-battery systems

A techno-economic simulation study of a virtual power plant
  • Sandro SchopferEmail author
  • Verena Tiefenbeck
  • Elgar Fleisch
  • Thorsten Staake
Special Issue Paper
  • 487 Downloads

Abstract

Decentralized photovoltaic (PV) battery systems have recently received great attention from consumers around the world. PV battery systems allow consumers to reduce their dependence on the local electricity supplier at lower or equivalent costs. However, the profitability of PV battery systems depends greatly on the local meteorological conditions and the local electricity retail tariff. In central European countries, PV battery systems generate and store less electricity in winter months due to lower irradiation. The battery, in particular, can be reserved to provide ancillary services during winter months and thereby improves the overall systems economics. In this study, a large dataset consisting of individual load profiles is used to simulate a virtual power plant which provides ancillary services during battery idle times. The results show that participants with large batteries can greatly increase their overall systems economics by participating in reserve markets. However, participants with small battery capacities may not be able to recover the additional costs for communication with the virtual power plant and are thus not suitable candidates to provide grid stabilizing services (ancillary services).

Keywords

Photovoltaics Stationary battery storage Self-consumption Frequency regulation Virtual power plant 

References

  1. 1.
    Agnew S, Dargusch P (2015) Effect of residential solar and storage on centralized electricity supply systems. Nat Climate Change. doi: 10.1038/nclimate2523
  2. 2.
    ComissionForEnergyRegulation. CER Dataset. http://www.ucd.ie/issda/data/commissionforenergyregulationcer/. Accessed 15 Dec 2015
  3. 3.
    Fenecon GmbH. Battery system provider. https://www.fenecon.de/
  4. 4.
    Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium sulphur. Renew Sustain Energy Rev 56:1008–1021. doi: 10.1016/j.rser.2015.12.009. http://www.sciencedirect.com/science/article/pii/S1364032115013921
  5. 5.
    Fraunhofer ISE (2012) Aktuelle Fakten zur Photovoltaik in Deutschland. Tech. Rep. 0, FraunhoferGoogle Scholar
  6. 6.
    Grigoleit T, Rothacher T, Hildebrandt M (2014) The photovoltaic market in Germany. Tech. rep., Germany Trade and InvestGoogle Scholar
  7. 7.
    Koller M, Borsche T, Ulbig A, Andersson G (2015) Review of grid applications with the Zurich 1MW battery energy storage system. Electr Power Syst Res. doi: 10.1016/j.epsr.2014.06.023
  8. 8.
    Konersmann L, Meier G (2015) Eigenverbrauch von Solarstrom im Mehrfamilienhaus. Tech. rep., Swiss Federal Office of EnergyGoogle Scholar
  9. 9.
    Lang T, Ammann D, Girod B (2016) Profitability in absence of subsidies: a techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings. Renew Energy 87:77–87. doi: 10.1016/j.renene.2015.09.059. http://www.sciencedirect.com/science/article/pii/S0960148115303384
  10. 10.
    Li R, Shaddick G, Yan H, Li F (2014) Sample size determination of photovoltaic by assessing regional variability. In: CIRED Workshop 2014, Rome, ItalyGoogle Scholar
  11. 11.
    Malhotra A, Battke B, Beuse M, Stephan A, Schmidt T (2016) Use cases for stationary battery technologies: a review of the literature and existing projects. Renew Sustain Energy Rev 56:705–721. doi: 10.1016/j.rser.2015.11.085. http://www.sciencedirect.com/science/article/pii/S1364032115013520
  12. 12.
    Mégel O, Mathieu JL, Andersson G (2015) Scheduling distributed energy storage units to provide multiple services under forecast error. Int J Electr Power Energy Syst 72:48–57. doi: 10.1016/j.ijepes.2015.02.010. http://www.sciencedirect.com/science/article/pii/S0142061515000939
  13. 13.
    Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Climate Change 5:329–332. doi: 10.1038/nclimate2564 CrossRefGoogle Scholar
  14. 14.
    Oldewurtel F, Borsche T, Bucher M, Fortenbacher P, Vayá MG, Haring T, Mathieu JL, Mégel O, Vrettos E, Andersson G (2013) A framework for and assessment of demand response and energy storage in power systems. In: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid (IREP), 2013 IREP Symposium, Rethymno, pp 1–24. doi: 10.1109/IREP.2013.6629419
  15. 15.
    Parra D, Patel MK (2016) Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Appl Energy 164:175–187. doi: 10.1016/j.apenergy.2015.11.037. http://www.sciencedirect.com/science/article/pii/S0306261915014877
  16. 16.
    Paulescu M, Paulescu E, Gravila P, Badescu V (2013) Weather modeling and forecasting of PV systems operation. Springer, Berlin. doi: 10.1007/978-1-4471-4649-0 CrossRefGoogle Scholar
  17. 17.
    Schopfer S, Tiefenbeck V, Fleisch E, Staake T (2016) Effect of tariff arbitrage on photovoltaic battery economics using predictive control. In: International Conference on Energy, Environment and Economics (ICEEE2016), EdinburghGoogle Scholar
  18. 18.
    Schopfer S, Tiefenbeck V, Staake T (2016) Untersuchung des Selbstversorgungsgrades und der Wirtschaftlichkeit von PV-Batterie Systemen anhand eines grossen Smart-Meter Datensatzes. In: 14. Symposium EnergieinnovationGoogle Scholar
  19. 19.
    Sprey JD, Klettke A, Moser A (2016) Regelleistungsbedarf im europäischen Übertragungsnetz. In: 14. Symposium Energieinnovation. GrazGoogle Scholar
  20. 20.
    Steber D, Bazan P, German R (2016) SWARM-Primärregelleistungserbringung mit verteilten Batterien. In: 14. Symposium Energieinnovation. GrazGoogle Scholar
  21. 21.
    Swiss Federal Officie of Energy (2011) Strompreisentwicklung in der Schweiz. Tech. reportGoogle Scholar
  22. 22.
    Swissgrid (2016) Swissgrid Ancillary Services.https://www.swissgrid.ch/swissgrid/en/home/experts/topics/ancillary_services.html. Accessed 5 April 2016
  23. 23.
    TESLA Motors (2013) Planned 2020 gigafactory production exceeds 2013 global production. https://www.teslamotors.com/sites/default/files/blog_attachments/gigafactory.pdf. Accessed 25 March 2016
  24. 24.
    Ulbig A (2014) Impact of low rotational inertia on power system stability and operation. http://e-citations.ethbib.ethz.ch/view/pub:142719. arXiv:1312.6435
  25. 25.
    Vayá MG, Andersson G (2015) Optimal bidding of plug-in electric vehicle aggregator in day-ahead and regulation markets Marina González Vayá * and Göran Andersson. Int J Electr Hybrid Veh 7(3)Google Scholar
  26. 26.
    WeatherAnalaytics (2015) Weather analytic. http://www.weatheranalytics.com. Accessed 8 Dec 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sandro Schopfer
    • 1
    Email author
  • Verena Tiefenbeck
    • 1
  • Elgar Fleisch
    • 1
  • Thorsten Staake
    • 2
  1. 1.Chair of Information Management, Department of Management, Technology and EconomicsETH ZürichZürichSwitzerland
  2. 2.Energy Efficient Systems GroupOtto-Friedrich Universität BambergBambergGermany

Personalised recommendations