A framework for disturbance analysis in smart grids by fault injection

Generating smart grid disturbance-related data
  • Igor KaitovicEmail author
  • Filip Obradovic
  • Slobodan Lukovic
  • Miroslaw Malek
Special Issue Paper


With growing complexity of electric power systems, a total number of disturbances is expected to increase. Analyzing these disturbances and understanding grid’s behavior, when under a disturbance, is a prerequisite for designing methods for boosting grid’s stability. The main obstacle to the analysis is a lack of relevant data that are publicly available. In this paper, we present a design and implementation of a framework for emulation of grid disturbances by employing simulation and fault-injection techniques. We also present a case study on generating voltage sag related data. A foreseen usage of the framework considers mainly prototyping, root-cause analysis as well as design and comparison of methods for disturbance detection and prediction.


Fault injection Dependability Prediction Simulation Smart grid Stability 



This work has been supported in part by a grant from the Swiss Commission for Technology and Innovation (CTI) in the scope of the SCCER-FURIES project.


  1. 1.
    Kaitovic I, Lukovic S, Malek M (2015) Unifying dependability of critical infrastructures: electric power system and ICT (concepts, figures of merit and taxonomy). In: IEEE pacific rim international symposium on dependable computing (PRDC). Zhangjiajie, ChinaGoogle Scholar
  2. 2.
    Giri J (2015) Proactive management of the future grid. IEEE J Power Energy Technol Syst 2(2):43–52CrossRefGoogle Scholar
  3. 3.
    Escritt T (2016) Power returns to Amsterdam after outage hits a million homes. Reuters article [Online]. Accessed March 2016
  4. 4.
    Covrig CF, Ardelean M, Vasiljevska J, Mengolini A, Fulli G, Amoiralis E, Jimenez MS, Filiou C (2014) Smart grid projects outlook 2014. JRC science and policy reportsGoogle Scholar
  5. 5.
    IBM Corporation (2012) Managing big data for smart grids and smart meters. IBM Software white paperGoogle Scholar
  6. 6.
    Kaitovic I, Lukovic S, Malek M (2015) Proactive failure management in smart grids for improved resilience (a methodology for failure prediction and mitigation). IEEE GLOBECOM smartgrid resilience (SGR) workshop, San DiegoGoogle Scholar
  7. 7.
    Rudin C et al (2012) Machine learning for the New York city power grid. IEEE Trans Pattern Anal Mach Intell 34(2):328–345CrossRefGoogle Scholar
  8. 8.
    Arlat J, Crouzet Y, Laprie JC (1989) Fault injection for dependability validation of fault-tolerant computing systems. In: Nineteenth international symposium on fault-tolerant computing (FTCS)Google Scholar
  9. 9.
    Irrera I, Vieira M (2014) A practical approach for generating failure data for assessing and comparing failure prediction algorithms. In: IEEE 20th Pacific rim international symposium on dependable computing (PRDC), SingaporeGoogle Scholar
  10. 10.
    Farhangi H (2010) The path of the smart grid. In: IEEE power and energy magazine, pp 18–28Google Scholar
  11. 11.
    Zhong Z, Xu C, Billian BJ, Zhang L, Tsai SJS, Conners RW, Centeno VA, Phadke AG, Liu Y (2005) Power system frequency monitoring network (FNET) implementation. IEEE Trans Power Syst 20(4):1914–1921CrossRefGoogle Scholar
  12. 12.
    Knaak J (2016) Das intelligente Arboner Verteilnetz: smart metering und smart grid in der praxis (Online). Accessed February 2016
  13. 13.
    Pignati M, Popovic M, Barreto Andrade S, Cherkaoui R, Flores D, Le Boudec JY, Mohiuddin M, Paolone M, Romano P, Sarri S, Tesfay T, Tomozei DC, Zanni L (2015) Real-time state estimation of the EPFL-campus medium-voltage grid by using PMUs. In: The sixth conference on innovative smart grid technologies (ISGT), Washington, DCGoogle Scholar
  14. 14.
    GridBox—a holistic smart grid approach (Online). Accessed March 2016
  15. 15.
    Open Electrical (2016) A list of power systems analysis software (Online). Accessed February 2016
  16. 16.
    Cole S, Belmans R (2011) MatDyn, a new matlab-based toolbox for power system dynamic simulation. IEEE Trans Power Syst 26(3):1129–1136CrossRefGoogle Scholar
  17. 17.
    Zimmerman RD, Murillo-Sanchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19CrossRefGoogle Scholar
  18. 18.
    Milano F (2005) An open source power system analysis toolbox. IEEE Trans Power Syst 20(3):1199–1206CrossRefGoogle Scholar
  19. 19.
    Power Systems Test Case Archive, University of Washington (Online). Accessed March 2016
  20. 20.
    Distribution Test Feeders (2016) IEEE PES Distribution system analysis subcommittee’s distribution test feeder working group (Online). Accessed March 2016
  21. 21.
    Milano F (2014) Documentation for PSAT version 2.1.9Google Scholar
  22. 22.
    IEEE Guide for Identifying and Improving Voltage Quality in Power Systems (2011) IEEE Std 1250-2011 (Revision of IEEE Std 1250-1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Igor Kaitovic
    • 1
    Email author
  • Filip Obradovic
    • 1
  • Slobodan Lukovic
    • 1
  • Miroslaw Malek
    • 1
  1. 1.ALaRI, Faculty of InformaticsUniversità della Svizzera italianaLuganoSwitzerland

Personalised recommendations