Preserving privacy in Distributed Energy Management

  • Daniel BrettschneiderEmail author
  • Daniel Hölker
  • Alfred Scheerhorn
  • Ralf Tönjes
Special Issue Paper


The smart power grid transforms into a distributed system of manifold stakeholders by integrating communication technology into the former static power grid. Distributed Energy Management (DEM) will play a vital role in future demand supply matching. An important and often overlooked factor in this concept is privacy. In this paper we present Priv-ADE, a privacy preserving algorithm for DEM. It utilises homomorphic encryption to privately gather aggregated data and perform energy management based on the max–min fairness principle. Simulations show that PrivADE achieves similar consumption results as two comparative approaches, while in contrast preserves privacy at all times. The computational and communicational complexity is analysed. Furthermore, the privacy concept is adopted to PowerMatcher.


Smart grid Distributed Energy Management Privacy Homomorphic encryption 


  1. 1.
    Brettschneider D, Hölker D, Tönjes R (2016) SiENA: simulator for energy network applications combining power, heat and communication. In: VDE eV (ed) VDE Kongress 2016Google Scholar
  2. 2.
    Brettschneider D, Hölker D, Tönjes R, Scheerhorn A (2016) On homomorphic encryption for privacy-preserving distributed load adaption in smart grids. In: 2016 IEEE international conference on communications (ICC)Google Scholar
  3. 3.
    Brettschneider D, Scheerhorn A, Hölker D, Roer P, Tönjes R (2015) Privacy-friendly distributed algorithm for energy management in smart grids. In: 2015 international conference and workshops on networked systems (NetSys), pp 1–8Google Scholar
  4. 4.
    ElGamal T (1984) A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley GR, Chaum D (eds) Advances in cryptology. Springer, Berlin, pp 10–18Google Scholar
  5. 5.
    Federal Statistical Office of Germany: Ausstattung privater Haushalte mit ausgewählten Gebrauchsgütern (2013)Google Scholar
  6. 6.
    Fontaine C, Galand F (2007) A survey of homomorphic encryption for nonspecialists. EURASIP J Inf Secur 2007:15:1–15:15Google Scholar
  7. 7.
    Henderson TR, Lacage M, Riley GF, Dowell C, Kopena J (2008) Network simulations with the ns-3 simulator. SIGCOMM Demonstr 15:17Google Scholar
  8. 8.
    Hinrichs C, Lehnhoff S, Sonnenschein M (2013) COHDA: a combinatorial optimization heuristic for distributed agents. In: Filipe J, Fred A (eds) Agents and artificial intelligence. Springer, Berlin, pp 23–39Google Scholar
  9. 9.
    Kok JK, Warmer CJ, Kamphuis IG (2005) PowerMatcher: multiagent control in the electricity infrastructure. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, pp 75–82 (ACM)Google Scholar
  10. 10.
    Kok K (2013) The powermatcher: smart coordination for the smart electricity grid. TNO, The NetherlandsGoogle Scholar
  11. 11.
    Li F, Luo B, Liu P (2010) Secure information aggregation for smart grids using homomorphic encryption. In: 2010 first IEEE international conference on smart grid communications (SmartGridComm), pp 327–332Google Scholar
  12. 12.
    Li H, Liang X, Lu R, Lin X, Shen X (2012) EDR: an efficient demand response scheme for achieving forward secrecy in smart grid. In: 2012 IEEE global communications conference (GLOBECOM), pp 929–934Google Scholar
  13. 13.
    Liang X, Li X, Lu R, Lin X, Shen X (2013) UDP: usage-based dynamic pricing with privacy preservation for smart grid. IEEE Trans Smart Grid 4(1):141–150CrossRefGoogle Scholar
  14. 14.
    Lu R, Liang X, Li X, Lin X, Shen X (2012) EPPA: an efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Trans Parallel Distrib Syst 23(9):1621–1631CrossRefGoogle Scholar
  15. 15.
    Mohsenian-Rad AH, Wong V, Jatskevich J, Schober R, Leon-Garcia A (2010) Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1(3):320–331CrossRefGoogle Scholar
  16. 16.
    NEPLAN AG: Neplan (2015). Accessed 17 Sept 2015
  17. 17.
    Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In: Stern J (ed) Advances in cryptology EUROCRYPT 99. Springer, Berlin, pp 223–238Google Scholar
  18. 18.
    Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Verein Deutscher Ingeniuere EV (2008) VDI 4655:2008-05 reference load profiles of single-family and multi-family houses for the use of CHP systemsIn: VDE eV (ed) VDI-Gesellschaft Energie und Umwelt, DÃOEsseldorfGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Brettschneider
    • 1
    Email author
  • Daniel Hölker
    • 1
  • Alfred Scheerhorn
    • 1
  • Ralf Tönjes
    • 1
  1. 1.Faculty of Engineering and Computer ScienceUniversity of Applied Sciences OsnabrückOsnabrückGermany

Personalised recommendations