Advertisement

Coordinated charge management for battery electric vehicles

Operation management of charging infrastructures for battery electric vehicles considering vehicle, infrastructure, and grid constraints
  • Felix BraamEmail author
  • Arne Groß
  • Michael Mierau
  • Robert Kohrs
  • Christof Wittwer
Special Issue Paper

Abstract

Compared to refueling gasoline powered vehicles, the charging of battery electric vehicles (BEVs) takes considerably more time which renders a single-purpose charging infrastructure inconvenient. More likely, the charging stations will be integrated into the parking infrastructure (parking decks, public, private and commercial parking sites). On average the duration of the parking will be longer than the duration of the charging process which creates a potential for load shifting. In turn this implies that the rated power of large charging infrastructures can be chosen to be smaller than the sum of rated powers of all charging points, provided that the load shifting potential can be activated. In this paper a complete description of the problem at hand is given in terms of a mixed integer linear program which can readily be integrated into the operation management of charging infrastructures. It allows to coordinate the charging processes of multiple BEVs to fully exploit the load shifting potential while taking into account the limitations of the distribution grid, the charging infrastructure, and the BEVs. In addition to ensuring the safety of the operation, the objective of the optimization can be adapted to set use-case specific incentives.

Keywords

BEV Energy management Mixed integer programming Neighborhood management self-consumption Electricity grid Charging infrastructure 

References

  1. 1.
    Braam F, Mierau M, Kohrs (2014) Modellprädiktiv optimiertes Management für Elektrofahrzeug-Ladecluster. In: VDE-Kongress 2014 Smart Cities, 2014 VDE, pp 111–116Google Scholar
  2. 2.
    Dauer D, Gottwalt S, Schweinfort W, Walker G (2014) Lademanagement für Elektrofahrzeuge am Beispiel der Netzampel. In: VDE-Kongress 2014Google Scholar
  3. 3.
    DIN Deutsches Institut für Normung eV (2011) DIN EN 61851-1:2011, Teil 1: Allgemeine Anforderungen. Tech. repGoogle Scholar
  4. 4.
    Ecker M, Nieto N, Kbitz S, Schmalstieg J, Blanke H, Warnecke A, Sauer DU (2014) Calendar and cycle life study of li(nimnco)o2-based 18650 lithium-ion batteries. Journal of Power Sources 248(0):839– 851. doi: 10.1016/j.jpowsour.2013.09.143. http://www.sciencedirect.com/science/article/pii/S0378775313016510
  5. 5.
    Feuerhahn S (2011) OpenMUC - Monitor & Control. Online. http://www.openmuc.org
  6. 6.
    Gan L, Topcu U, Low S (2012) Stochastic distributed protocol for electric vehicle charging with discrete charging rate. In: Power and Energy Society General Meeting, 2012 IEEE, pp 1–8Google Scholar
  7. 7.
    Hu J, You S, Oestergaard J, Lind M, Wu Q (2011) Optimal charging schedule of an electric vehicle fleet. In: Universities’ Power Engineering Conference (UPEC), Proceedings of 2011 46th International, pp 1–6Google Scholar
  8. 8.
    Hu J, You S, Lind M, Ostergaard J (2014) Coordinated charging of electric vehicles for congestion prevention in the distribution grid. Smart Grid, IEEE Transactions on 5(2):703–711. doi: 10.1109/TSG.2013.2279007
  9. 9.
    Iria J, Soares F, Franchin I, Silva N (2014) Development of a novel management system for electric vehicle charging. In: Electric Vehicle Conference (IEVC), 2014 IEEE International, pp 1–7Google Scholar
  10. 10.
    ISO (2013) Iso 15118-1 general information and use-case definition. Tech. repGoogle Scholar
  11. 11.
    ISO (2014) Iso 15118-2 network and application protocol requirements. Tech. repGoogle Scholar
  12. 12.
    LCIE Bureau Veritas (2013) Technical requirements table. Tech. repGoogle Scholar
  13. 13.
    Ma WJ, Gupta V, Topcu U (2014) Distributed charging control of electric vehicles using regret minimization. In: IEEE 53rd Annual Conference on Decision and Control (CDC), 2014, pp 4917–4923Google Scholar
  14. 14.
    Mierau M (2016) Intelligente Ladeinfrastruktur mit Netzintegration, intellan, final report. German National Library of Science and Technology (to be published)Google Scholar
  15. 15.
    Mittelsdorf M (2015) Fellbach ZEROplus - Elektromobilität und Energieplushaus. In: Fachforum Energieeffizienzhaus-Plus, OTTIGoogle Scholar
  16. 16.
    MJ Bradley & Associates LLC (2014) Electric Vehicle Grid Integration in the U.S., Europe and China. Tech. rep., The Regulatory Assistance ProjectGoogle Scholar
  17. 17.
    Mock P, Yang Z (2014) Driving electrification, a global comparison of fiscal incentive policy for electric vehicles. Tech. rep, The International Council On Clean Transportation, WhitepaperGoogle Scholar
  18. 18.
    Peas Lopes J, Soares F, Almeida P (2009) Identifying management procedures to deal with connection of electric vehicles in the grid. In: PowerTech, 2009 IEEE Bucharest, pp 1–8. doi: 10.1109/PTC.2009.5282155
  19. 19.
    Rassaei F, Soh WS, Chua KC (2015) Demand response for residential electric vehicles with random usage patterns in smart grids. Sustainable Energy, IEEE Transactions on 6(4):1367–1376. doi: 10.1109/TSTE.2015.2438037
  20. 20.
    Richardson P, Flynn D, Keane A (2010) Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems. In: IEEE Power and Energy Society General Meeting, pp 1–6Google Scholar
  21. 21.
    Rivera J, Jacobsen HA (2014) A distributed anytime algorithm for network utility maximization with application to real-time ev charging control. In: IEEE 53rd Annual Conference on Decision and control (CDC), 2014, pp 947–952Google Scholar
  22. 22.
    Rotering N, Ilic M (2011) Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. Power Systems, IEEE Transactions on 26(3):1021–1029. doi: 10.1109/TPWRS.2010.2086083
  23. 23.
    Salah F, Ilg JP, Flath CM, Basse H, van Dinther C (2015) Impact of electric vehicles on distribution substations: a swiss case study. Applied Energy 137:88–96. doi: 10.1016/j.apenergy.2014.09.091. http://www.sciencedirect.com/science/article/pii/S0306261914010393
  24. 24.
    Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid, 3(1):26–37. doi: 10.1109/TSG.2011.2168431
  25. 25.
    Tang W, Bi S, Zhang YJ (2013) Online speeding optimal charging algorithm for electric vehicles without future information. In: IEEE International Conference on Smart Grid Communications (SmartGridComm), 2013, pp 175–180Google Scholar
  26. 26.
    Unda IG, Papadopoulos P, Skarvelis-Kazakos S, Cipcigan LM, Jenkins N, Zabala E (2014) Management of electric vehicle battery charging in distribution networks with multi-agent systems. Electric Power Systems Research 110:172–179. doi: 10.1016/j.epsr.2014.01.014. http://www.sciencedirect.com/science/article/pii/S0378779614000182
  27. 27.
    Verzijlbergh RA, Vries LJD, Lukszo Z (2014) Renewable energy sources and responsive demand. Do we need congestion management in the distribution grid? IEEE Transactions on Power Systems 29(5):2119–2128. doi: 10.1109/TPWRS.2014.2300941
  28. 28.
    Wu D, Zeng H, Boulet B (2014) Neighborhood level network aware electric vehicle charging management with mixed control strategy. In: Electric Vehicle Conference (IEVC), 2014 IEEE International, pp 1–7Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Felix Braam
    • 1
    Email author
  • Arne Groß
    • 1
  • Michael Mierau
    • 1
  • Robert Kohrs
    • 1
  • Christof Wittwer
    • 1
  1. 1.Fraunhofer Institute for Solar Energy Systems ISEFreiburgGermany

Personalised recommendations