Pattern mining and fault detection via \(\textit{COP}_{\textit{therm}}\)-based profiling with correlation analysis of circuit variables in chiller systems

Abstract

In this paper, we propose methods of handling, analyzing, and profiling monitoring data of energy systems using their thermal coefficient of performance seen in uneven segmentations in their time series databases. Aside from assessing the performance of chillers using this parameter, we dealt with pinpointing different trends that this parameter undergoes through while the systems operate. From these results, we identified and cross-validated with domain experts outlier behavior which were ultimately identified as faulty operation of the chiller. Finally, we establish correlations of the parameter with the other independent variables across the different circuits of the machine with or without the observed faulty behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Proklima International, Natural refrigerants: sustainable Ozone- and climate-friendly alternatives to HCFCs”, Technical Report, Deutsche Gesellschaft fr Technische Zusammenarbeit (GTZ) GmbH—German Technical Cooperation—Programme Proklima Dag-Hammarskjld-Weg 1-5 65760 Eschborn, Germany (2008)

  2. 2.

    Federal Ministry for the Environment, Nature conservation and nuclear safety, the international climate initiative of the Federal Republic of Germany, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Public Relations Division 11055 Berlin, Germany (2009)

  3. 3.

    Dabrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interface Sci 93:135–224

    Article  Google Scholar 

  4. 4.

    Jakob U, Mittelbach W (2008) Development and investigation of a compact silica gel/water adsorption chiller integrated in solar cooling system, VII Minsk international seminar: heat pipes, heat pumps, refrigerators, power sources, minks, Belarus, pp 8–11

  5. 5.

    Nunez T, Mittelbach W, Henning HM (2007) Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications. Appl Therm Eng 27:22052212

    Article  Google Scholar 

  6. 6.

    Liu YL, Wang RZ, Xia ZZ (2005) Experimental study on a continuous adsorption water chiller with novel design. Int J Refrig 28:218230

    Google Scholar 

  7. 7.

    Liu YL, Wang RZ, Xia ZZ (2005) Experimental performance of a silica gel–water adsorption chiller. Appl Therm Eng 25(2—-3):359–375

    Article  Google Scholar 

  8. 8.

    Gong LX, Wang RZ (2012) Experimental study on an adsorption chiller employing lithium chloride in silica gel and methanol. Int J Refrig 35(7):19501957

    Article  Google Scholar 

  9. 9.

    http://www.solair-project.eu/142.0.html

  10. 10.

    Ayadi O, Aprile M, Motta M (2012) Solar cooling systems utilising concentrating solar collectors—an overview. Energy Procedia 30:875–883

    Article  Google Scholar 

  11. 11.

    Fong KF, Lee CK, Chow TT (2012) Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong. Appl Energy 90:189–195

    Article  Google Scholar 

  12. 12.

    Bermejo P, Pino FJ, Rosa F (2010) Solar absorption cooling plant in Seville. Solar Energy 84:1503–1512

    Article  Google Scholar 

  13. 13.

    Zhai XQ, Wang RZ (2010) Experimental investigation and performance analysis on a solar adsorption cooling system with/without heat storage. Appl Energy 87:824–835

  14. 14.

    Helm M, Keil C, Hiebler S, Mehling H, Schweigler G (2009) Solar heating and cooling system with absorption chiller and low temperature latent heat storage: energetic performance and operational experience. Int J Refrig 32:596–606

    Article  Google Scholar 

  15. 15.

    Ayadi O, Mauro A, Aprile M, Motta M (2012) Performance assessment for solar heating and cooling system for office building in Italy. Energy Procedia 30:490–494

    Article  Google Scholar 

  16. 16.

    Baldwin C, Cruickshank C (2012) A review of solar cooling technologies for residential applications in Canada. Energy Procedia 30:495–504

    Article  Google Scholar 

  17. 17.

    Fong KF, Chow TT, Lee CK, Lin Z, Chan LS (2010) Comparative study of different solar cooling systems for buildings in subtropical city. Solar Energy 84:227–44

    Article  Google Scholar 

  18. 18.

    Tsoutsos T, Aloumpi E, Gkouskos Z, Karagiorgas M (2010) Design of a solar absorption cooling system in a Greek hospital. Energy Build 42(2):265–272

    Article  Google Scholar 

  19. 19.

    Ketjoy N, Yongphayoon R, Mansiri K (2013) Performance evaluation of 35 kW LiBr–H\(_2\)O solar absorption cooling system in Thailand. Energy Procedia 34:198–210

    Article  Google Scholar 

  20. 20.

    Boopathi Raja V, Shanmugam V (2012) A review and new approach to minimise the cost of solar assisted absorption cooling system. Renew Sustain Energy Rev 16:6725–6731

    Article  Google Scholar 

  21. 21.

    Hang Y, Qu M, Ukkusuri S (2011) Optimizing design of a solar cooling system using central composite design techniques. Energy Build 43:988–994

    Article  Google Scholar 

  22. 22.

    Joudi K, Abdul-Ghafour Q (2003) Development of design charts for solar cooling systems. Part I: computer simulation for a solar cooling system and development of solar cooling system design charts. Energy Convers Manag 44:313–339

    Article  Google Scholar 

  23. 23.

    Praene JP, Marc O, Lucas F, Miranville F (2011) Simulation and experimental investigation of solar absorption cooling system in Reunion Island. Appl Energy 88:831–839

    Article  Google Scholar 

  24. 24.

    Pelleg D, Moore A (2000) X-means: extending K-means with efficient estimation of the number of clusters. In: Proceedings of the seventeenth international conference on machine learning. Morgan Kaufmann, San Francisco, pp 723–734

  25. 25.

    http://www.kpwsolutions.com.au/media/brochures/KPW-Solutions-Cooling-Data-Sheets

  26. 26.

    http://www.gbunet.de/outgoing/nak-prospect

Download references

Acknowledgments

The authors would like to thank Dan Pelleg and the Auton Lab of Carnegie Mellon University’s School of Computer Science for the implementation of X-Means used in this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jasmine Malinao.

Appendix

Appendix

Tables 3 and 4.

Table 3 Correlation values \(r\) for \(\textit{COP}_{\textit{therm}}\) and \(\textit{TMTsu}\) values computed per cluster
Table 4 Correlation values \(r\) for \(\textit{COP}_{\textit{therm}}\) and \(\textit{TLTre}\) values computed per cluster

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malinao, J., Judex, F., Selke, T. et al. Pattern mining and fault detection via \(\textit{COP}_{\textit{therm}}\)-based profiling with correlation analysis of circuit variables in chiller systems. Comput Sci Res Dev 31, 79–87 (2016). https://doi.org/10.1007/s00450-014-0277-5

Download citation

Keywords

  • Data mining
  • Energy efficiency
  • Building automation
  • HVAC
  • Adsorption chiller