Energy-Aware Design Space Exploration for GPGPUs

  • Pascal Libuschewski
  • Dominic Siedhoff
  • Frank Weichert
Special Issue Paper

Abstract

This work presents a novel approach for automatically determining the most power- or energy-efficient Graphics Processing Units (GPUs) with respect to given parallel computation problems.

Keywords

Simulation Deployment of mechanisms Design space exploration GPGPU Green computing 

References

  1. 1.
    Ahmad I, Ranka S (2012) Handbook of energy-aware and green computing, 1st edn. Chapman & Hall/CRC, London. Two volume set Google Scholar
  2. 2.
    Bakhoda A, Yuan G, Fung W, Wong H, Aamodt T (2009) Analyzing cuda workloads using a detailed gpu simulator. In: IEEE international symposium on performance analysis of systems and software, ISPASS 2009, pp 163–174 CrossRefGoogle Scholar
  3. 3.
    Cebrian J, Guerrero G, Garcia J (2012) Energy efficiency analysis of gpus. In: IEEE 26th international parallel and distributed processing symposium workshops PhD forum (IPDPSW), 2012, pp 1014–1022. doi:10.1109/IPDPSW.2012.124 CrossRefGoogle Scholar
  4. 4.
    Che S, Boyer M, Meng J, Tarjan D, Sheaffer J, Lee SH, Skadron K (2009) Rodinia: a benchmark suite for heterogeneous computing. In: IEEE international symposium on workload characterization, IISWC 2009, pp 44–54 Google Scholar
  5. 5.
    Khronos Group: OpenCL Specification (2013). URL: http://www.khronos.org/registry/cl/
  6. 6.
    Leng J, Hetherington T, ElTantawy A, Gilani S, Kim NS, Aamodt TM, Reddi VJ (2013) Gpuwattch: enabling energy optimizations in gpgpus. In: International symposium on computer architecture Google Scholar
  7. 7.
    Li S, Ahn JH, Strong R, Brockman J, Tullsen D, Jouppi N (2009) Mcpat: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: 42nd annual IEEE/ACM international symposium on microarchitecture, 2009. MICRO-42, pp 469–480 CrossRefGoogle Scholar
  8. 8.
    Libuschewski P, Siedhoff D, Timm C, Gelenberg A, Weichert F (2013) Fuzzy-enhanced, real-time capable detection of biological viruses using a portable biosensor. In: Proceedings of the international joint conference on biomedical engineering systems and technologies (BIOSIGNALS). Publication Google Scholar
  9. 9.
    Luke S (2013) The ECJ Owner’s manual Google Scholar
  10. 10.
    McIntosh-Smith S, Wilson T, Ibarra AA, Crisp J, Sessions RB (2012) Benchmarking energy efficiency, power costs and carbon emissions on heterogeneous systems. Comput J 55:192–205 CrossRefGoogle Scholar
  11. 11.
    Moore G (1998) Cramming more components onto integrated circuits. Proc IEEE 86(1):82–85. doi:10.1109/JPROC.1998.658762 CrossRefGoogle Scholar
  12. 12.
    NVIDIA Corporation: CUDA Architecture (2013). URL: http://www.nvidia.com/object/cuda_home_new.html
  13. 13.
    Ramani K, Ibrahim A, Shimizu D, Powerred: a flexible modeling framework for power efficiency exploration in gpus Google Scholar
  14. 14.
    Rofouei M, Stathopoulos T, Ryffel S, Kaiser W, Sarrafzadeh M (2008) Energy-aware high performance computing with graphic processing units. In: HotPower’08: proc of ACM SOSP workshop on power aware computing and systems (HotPower) 2008 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pascal Libuschewski
    • 1
  • Dominic Siedhoff
    • 1
  • Frank Weichert
    • 1
  1. 1.Lehrstuhl Informatik VIITechnische Universität DortmundDortmundGermany

Personalised recommendations