Computer Science - Research and Development

, Volume 27, Issue 4, pp 255–263 | Cite as

Determine energy-saving potential in wait-states of large-scale parallel programs

  • Michael KnoblochEmail author
  • Bernd Mohr
  • Timo Minartz
Open Access
Special Issue Paper


Energy consumption is one of the major topics in high performance computing (HPC) in the last years. However, little effort is put into energy analysis by developers of HPC applications.

We present our approach of combined performance and energy analysis using the performance analysis tool-set Scalasca. Scalascas parallel wait-state analysis is extended by a calculation of the energy-saving potential if a lower power-state can be used.


Power consumption Energy efficiency Energy Performance Analysis Scalasca MPI 


  1. 1.
    Dong Y, Chen J, Yang X, Yang C, Peng L (2008) Low power optimization for MPI collective operations. In: Young computer scientists, International conference for, pp 1047–1052 CrossRefGoogle Scholar
  2. 2.
    Feng X, Ge R, Cameron KW (2005) Power and energy profiling of scientific applications on distributed systems. In: Proceedings of the 19th IEEE international parallel and distributed processing symposium, IPDPS’05. IEEE Computer Society, Washington, vol 1, p 34. doi: 10.1109/IPDPS.2005.346 CrossRefGoogle Scholar
  3. 3.
    Freeh VW, Pan F, Kappiah N, Lowenthal DK, Springer R (2005) Exploring the energy-time tradeoff in MPI programs on a power-scalable cluster. In: Proceedings of the 19th IEEE international parallel and distributed processing symposium, IPDPS’05, vol 1. IEEE Computer Society, Washington. doi: 10.1109/IPDPS.2005.214 Google Scholar
  4. 4.
    Ge R, Feng X, Cameron KW (2005) Performance-constrained distributed DVS scheduling for scientific applications on power-aware clusters. In: Proceedings of the 2005 ACM/IEEE conference on supercomputing, SC’05. IEEE Computer Society, Washington, p 34. doi: 10.1109/SC.2005.57 Google Scholar
  5. 5.
    Ge R, Feng X, Song S, Chang HC, Li D, Cameron KW (2009) PowerPack: energy profiling and analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst 99:658–671 Google Scholar
  6. 6.
    Geimer M, Wolf F, Wylie BJN, Abraham E, Becker D, Mohr B (2010) The Scalasca performance toolset architecture. Concurr Comput: Pract Exp 22(6):277–288 Google Scholar
  7. 7.
    Gibbon P (2003) PEPC: Pretty efficient parallel Coulomb-solver. Forschungszentrum Jülich Google Scholar
  8. 8.
    Hsu CH, Feng WC (2005) A power-aware run-time system for high-performance computing. In: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, SC’05. IEEE Computer Society, Washington, p 1. doi:10.1109/SC.2005.3 Google Scholar
  9. 9.
    Huang S, Feng W (2009) Energy-efficient cluster computing via accurate workload characterization. In: Proceedings of the 2009 9th IEEE/ACM international symposium on cluster computing and the grid, CCGRID ’09. IEEE Computer Society, Washington, pp 68–75. doi: 10.1109/CCGRID.2009.88 CrossRefGoogle Scholar
  10. 10.
    Kappiah N, Freeh VW, Lowenthal DK (2005) Just in time dynamic voltage scaling: Exploiting inter-node slack to save energy in MPI programs. In: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, SC’05. IEEE Computer Society, Washington, p 33. doi: 10.1109/SC.2005.39 Google Scholar
  11. 11.
    Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M, Mickler H, Müller MS, Nagel WE (2008) The Vampir performance analysis tool-set. In: Tools for high performance computing, Proceedings of the 2nd international workshop on parallel tools. Springer, Berlin, pp 139–155 CrossRefGoogle Scholar
  12. 12.
    Lim MY, Freeh VW, Lowenthal DK (2006) Adaptive, transparent frequency and voltage scaling of communication phases in MPI programs. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC’06. ACM, New York. doi: 10.1145/1188455.1188567 Google Scholar
  13. 13.
    Lu YH, Benini L, De Micheli G (2000) Operating-system directed power reduction. In: Proceedings of the 2000 international symposium on low power electronics and design, ISLPED ’00. ACM, New York, pp 37–42. doi: 10.1145/344166.344189 CrossRefGoogle Scholar
  14. 14.
    Minartz T, Kunkel J, Ludwig T (2010) Simulation of power consumption of energy efficient cluster hardware. Comput Sci Res Dev 25:165–175 CrossRefGoogle Scholar
  15. 15.
    Minartz T, Knobloch M, Ludwig T, Mohr B (2011) Managing hardware power saving modes for high performance computing In: Proceedings of the 2nd international green computing Conference (to appear) Google Scholar
  16. 16.
    Minartz T, Molka D, Knobloch M, Krempel S, Ludwig T, Nagel W, Mohr B, Falter H (2011) eeClust—energy-efficient cluster computing. In proceedings of the CiHPC: competence in high performance computing, HPC status konferenz der Gauß-Allianz e.V. (to appear) Google Scholar
  17. 17.
    Nikolopoulos DS (2009) Green building blocks—software stacks for energy-efficient clusters and data centers. ERCIM News 79 Google Scholar
  18. 18.
    Pinheiro E, Bianchini R, Carrera EV, Heath T (2001) Load balancing and unbalancing for power and performance in cluster-based systems. In: Workshop on compilers and operating systems for low power. Google Scholar
  19. 19.
    Snowdon DC, Petters SM, Heiser G (2007) Accurate on-line prediction of processor and memory energy usage under voltage scaling. In: Proceedings of the 7th ACM & IEEE international conference on embedded software, EMSOFT’07, pp 84–93 CrossRefGoogle Scholar
  20. 20.
    Zamani R, Afsahi A (2010) Adaptive estimation and prediction of power and performance in high performance computing. Comput Sci Res Dev 25:177–186 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Jülich Supercomputing Centre (JSC) Forschungszentrum JülichJülichGermany
  2. 2.Department of InformaticsUniversity of HamburgHamburgGermany

Personalised recommendations