Skip to main content

Advertisement

Log in

Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency

  • Special Issue Paper
  • Published:
Computer Science - Research and Development

Abstract

This paper presents the power profile of two high performance dense linear algebra libraries i.e., LAPACK and PLASMA. The former is based on block algorithms that use the fork-join paradigm to achieve parallel performance. The latter uses fine-grained task parallelism that recasts the computation to operate on submatrices called tiles. In this way tile algorithms are formed. We show results from the power profiling of the most common routines, which permits us to clearly identify the different phases of the computations. This allows us to isolate the bottlenecks in terms of energy efficiency. Our results show that PLASMA surpasses LAPACK not only in terms of performance but also in terms of energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agullo E, Hadri B, Ltaief H, Dongarrra J (2009) Comparative study of one-sided factorizations with multiple software packages on multi-core hardware. In: SC ’09: proceedings of the conference on high performance computing networking, storage and analysis. ACM, New York, pp 1–12. http://doi.acm.org/10.1145/1654059.1654080

    Chapter  Google Scholar 

  2. Anderson E, Bai Z, Bischof C, Blackford SL, Demmel JW, Dongarra JJ, Croz JD, Greenbaum A, Hammarling S, McKenney A, Sorensen DC (1999) LAPACK user’s guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  3. Anzt H, Rocker B, Heuveline V (2010) Energy efficiency of mixed precision iterative refinement methods using hybrid hardware platforms—an evaluation of different solver and hardware configurations. Comput Sci 25(3–4):141–148. doi:10.1007/s00450-010-0124-2

    Google Scholar 

  4. Bekas C, Curioni A (2010) A new energy aware performance metric. Comput Sci 25(3–4):187–195. doi:10.1007/s00450-010-0119-z

    Google Scholar 

  5. Bischof CH, Lang B, Sun X (2000) Algorithm 807: the SBR toolbox—software for successive band reduction. ACM Trans Math Softw 26(4):602–616. http://doi.acm.org/10.1145/365723.365736

    Article  MathSciNet  Google Scholar 

  6. Buttari A, Dongarra J, Langou J, Langou J, Luszczek P, Kurzak J (2007) Mixed precision iterative refinement techniques for the solution of dense linear systems. Int J Hight Perform Comput Appl 21(4):457–466. doi:10.1177/1094342007084026

    Article  Google Scholar 

  7. Buttari A, Langou J, Kurzak J, Dongarra J (2009) A class of parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput 35(1):38–53

    Article  MathSciNet  Google Scholar 

  8. Chen G, Malkowski K, Kandemir MT, Raghavan P (2005) Reducing power with performance constraints for parallel sparse applications. In: IPDPS. IEEE Comput Soc, Los Alamitos. http://doi.ieeecomputersociety.org/10.1109/IPDPS.2005.378

    Google Scholar 

  9. Ding Y, Malkowski K, Raghavan P, Kandemir MT (2008) Towards energy efficient scaling of scientific codes. In: IPDPS. IEEE Press, New York, pp 1–8. doi:10.1109/IPDPS.2008.4536217

    Google Scholar 

  10. Freeh VW, Lowenthal DK (2005) Using multiple energy gears in MPI programs on a power-scalable cluster. In: Pingali K, Yelick KA, Grimshaw AS (eds) Proceedings of the ACM SIGPLAN symposium on principles and practice of parallel programming (10th PPOPP’2005), Chicago, IL, USA. ACM SIGPLAN Notices, vol 40, pp 164–173

    Chapter  Google Scholar 

  11. Ge R, Feng X, Song S, Chang HC, Li D, Cameron KW (2010) Powerpack: Energy profiling and analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst PDS-21(5):658–671

    Article  Google Scholar 

  12. Golub GH, Van Loan CF (1996) Matrix computation, 3rd edn. John Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore

    Google Scholar 

  13. Kågström B, Kressner D, Quintana-Ortí E, Quintana-Ortí G (2008) Blocked algorithms for the reduction to Hessenberg-triangular form revisited. BIT Numer Math 48:563–584

    Article  MATH  Google Scholar 

  14. Kappiah N, Freeh VW, Lowenthal DK (2005) Just in time dynamic voltage scaling: exploiting inter-node slack to save energy in MPI programs. In: SC. IEEE Comput Soc, Los Alamitos, p 33. http://doi.acm.org/10.1145/1105760.1105797

    Google Scholar 

  15. Kogge P, Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M, Franzon P, Harrod W, Hill K, Hiller J, Karp S, Keckler S, Klein D, Lucas R, Richards M, Scarpelli A, Scott S, Snavely A, Sterling T, Williams RS, Yelick K (2008) Exascale computing study: technology challenges in achieving exascale systems. Tech Rep TR-2008-13, Department of Computer Science and Engineering. University of Notre Dame

  16. Ltaief H, Luszczek P, Dongarra J (2011, submitted) High performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures. ACM Trans Math Softw

  17. Luszczek P, Ltaief H, Dongarra J (2011) Two-stage tridiagonal reduction for dense symmetric matrices using tile algorithms on multicore architectures. In: Proceedings of IPDPS 2011. ACM, Anchorage

    Google Scholar 

  18. Multicore application modeling infrastructure (MuMI) project. http://www.mumi-tool.org

  19. Sutter H (2005) The free lunch is over: a fundamental turn toward concurrency in software. Dr Dobb’s Journal 30(3). http://www.ddj.com/184405990

  20. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia. http://www.siam.org/books/OT50/Index.htm

    Book  MATH  Google Scholar 

  21. University of Tennessee Knoxville (2010) PLASMA users’ guide, parallel linear algebra software for multicore architectures, version 2.3. Available electronically at http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users_guide.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Ltaief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ltaief, H., Luszczek, P. & Dongarra, J. Profiling high performance dense linear algebra algorithms on multicore architectures for power and energy efficiency. Comput Sci Res Dev 27, 277–287 (2012). https://doi.org/10.1007/s00450-011-0191-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-011-0191-z

Keywords

Navigation