Computer Science - Research and Development

, Volume 27, Issue 4, pp 265–275 | Cite as

Energy-aware job scheduler for high-performance computing

  • Olli MämmeläEmail author
  • Mikko Majanen
  • Robert Basmadjian
  • Hermann De Meer
  • André Giesler
  • Willi Homberg
Special Issue Paper


In recent years energy-aware computing has become a major topic, not only in wireless and mobile devices but also in devices using wired technology. The ICT industry is consuming an increasing amount of energy and a large part of the consumption is generated by large-scale data centers. In High-Performance Computing (HPC) data centers, higher performance equals higher energy consumption. This has created incentives on exploring several alternatives to reduce the energy consumption of the system, such as energy-efficient hardware or the Dynamic Voltage and Frequency Scaling (DVFS) technique. This work presents an energy-aware scheduler that can be applied to a HPC data center without any changes in hardware. The scheduler is evaluated with a simulation model and a real-world HPC testbed. Our experiments indicate that the scheduler is able to reduce the energy consumption by 6–16% depending on the job workload. More importantly, there is no significant slowdown in the turnaround time or increase in the wait time of the job. The results hereby evidence that our approach can be beneficial for HPC data center operators without a large penalty on service level agreements.


HPC Energy-efficiency Simulation Testbed Scheduling Power consumption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Bailey Lee C, Schwartzman Y, Hardy J, Snavely A (2005) Are user runtime estimates inherently inaccurate? In: Job scheduling strategies for parallel processing. Lecture notes in computer science, vol 3277, pp 253–263. Springer, Berlin. CrossRefGoogle Scholar
  5. 5.
    Barroso L, Holzle U (2007) The case for energy-proportional computing. Computer 40(12):33–37. doi: 10.1109/MC.2007.443 CrossRefGoogle Scholar
  6. 6.
    Basmadjian R, Ali N, Niedermeier F, de Meer H, Giuliani G (2011) A methodology to predict the power consumption of servers in data centers. In: Proceedings of the 2nd international conference on energy-efficient computing and networking 2011 (e-Energy). ACM, New York Google Scholar
  7. 7.
    Bianzino A, Chaudet C, Larroca F, Rossi D, Rougier J (2010) Energy-aware routing: a reality check. In: GLOBECOM workshops (GC Wkshps). IEEE Press, New York, pp 1422–1427. doi: 10.1109/GLOCOMW.2010.5700172 Google Scholar
  8. 8.
    Cirne W, Berman F (2001) A comprehensive model of the supercomputer workload. In: IEEE international workshop on workload characterization (WWC-4), pp 140–148. doi: 10.1109/WWC.2001.990753 Google Scholar
  9. 9.
  10. 10.
    Etinski M, Corbalan J, Labarta J, Valero M (2010) Utilization driven power-aware parallel job scheduling. Comput Sci Res Dev 25:207–216.  10.1007/s00450-010-0129-x CrossRefGoogle Scholar
  11. 11.
    Fan X, Weber WD, Barroso LA (2007) Power provisioning for a warehouse-sized computer. In: Proceedings of the 34th annual international symposium on computer architecture (ISCA’07). ACM, New York, pp 13–23. CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Freeh VW, Lowenthal DK, Pan F, Kappiah N, Springer R, Rountree BL, Femal ME (2007) Analyzing the energy-time trade-off in high-performance computing applications. IEEE Trans Parallel Distrib Syst 18:835–848. doi: 10.1109/TPDS.2007.1026 CrossRefGoogle Scholar
  14. 14.
    Ge R, Feng X, Song S, Chang HC, Li D, Cameron K (2010) Powerpack: energy profiling and analysis of high-performance systems and applications. IEEE Trans Parallel Distrib Syst 21(5):658–671. doi: 10.1109/TPDS.2009.76 CrossRefGoogle Scholar
  15. 15.
    Girolamo MD, Giuliani G, Egea JCL, Homberg W, Giesler A, Lent R, Mahmoodi T, Sannelli D, Salden A, Georgiadou V, Dang MQ, de Meer H, Basmadjian R, Klingert S, Schulze T (2011) Pilot evaluation of energy control plug-in inside single data centers. Deliverable D-6.2 v8.0, FIT4Green. FP7-ICT-2009-4-249020–FIT4Green/D-6.2,
  16. 16.
    Hikita J, Hirano A, Nakashima H (2008) Saving 200 KW and $200 k/year by power-aware job/machine scheduling. In: IEEE international symposium on parallel and distributed processing (IPDPS 2008), pp 1–8. doi: 10.1109/IPDPS.2008.4536218 CrossRefGoogle Scholar
  17. 17.
    Hsu Ch, Feng Wc (2005) A power-aware run-time system for high-performance computing. In: Proceedings of the 2005 ACM/IEEE conference on supercomputing (SC’05). IEEE Computer Society, Washington, p 1. Google Scholar
  18. 18.
  19. 19. Inet framework
  20. 20. Omnet++ network simulation framework
  21. 21.
  22. 22.
  23. 23. Gartner newsroom—press release
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    Lent R (2010) Simulating the power consumption of computer networks. In: 15th IEEE international workshop on computer aided modeling, analysis and design of communication links and networks (CAMAD), pp 96–100. doi: 10.1109/CAMAD.2010.5686955 CrossRefGoogle Scholar
  28. 28.
    Liu Y, Zhu H (2010) A survey of the research on power management techniques for high-performance systems. Softw Pract Exp 40:943–964. CrossRefGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
    Pinheiro E, Bianchini R, Carrera EV, Heath T (2001) Load balancing and unbalancing for power and performance in cluster-based systems. In: Proceedings of the workshop on compilers and operating systems for low power (COLP) Google Scholar
  32. 32.
    Ranganathan P, Rivoire S, Moore J (2009) Models and metrics for energy-efficient computing. Adv Comput 75:159–233 CrossRefGoogle Scholar
  33. 33.
    Restrepo J, Gruber C, Machuca C (2009) Energy profile aware routing. In: IEEE international conference on communications workshops, pp 1–5. doi: 10.1109/ICCW.2009.5208041 CrossRefGoogle Scholar
  34. 34.
    Rivoire S, Ranganathan P, Kozyrakis C (2008) A comparison of high-level full-system power models. In: Proceedings of the conference on power aware computing and systems (HotPower’08). Google Scholar
  35. 35.
    Rivoire S, Shah M, Ranganatban P, Kozyrakis C, Meza J (2007) Models and metrics to enable energy-efficiency optimizations. Computer 40(12):39–48. doi: 10.1007/s00450-011-0189-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Olli Mämmelä
    • 1
    Email author
  • Mikko Majanen
    • 1
  • Robert Basmadjian
    • 2
  • Hermann De Meer
    • 2
  • André Giesler
    • 3
  • Willi Homberg
    • 3
  1. 1.VTT Technical Research Centre of FinlandOuluFinland
  2. 2.University of PassauPassauGermany
  3. 3.Jülich Supercomputing CentreJülichGermany

Personalised recommendations