Abstract
In many numerical simulation codes the backbone of the application covers the solution of linear systems of equations. Often, being created via a discretization of differential equations, the corresponding matrices are very sparse. One popular way to solve these sparse linear systems are multigrid methods—in particular AMG—because of their numerical scalability. But looking at modern multi-core architectures, also the parallel scalability has to be taken into account. With the memory bandwidth usually being the bottleneck of sparse matrix operations these linear solvers can’t always benefit from increasing numbers of cores. To exploit the available aggregated memory bandwidth on larger scale NUMA machines evenly distributed data is often more an issue than load balancing. Additionally, using a threading model like OpenMP, one has to ensure the data locality manually by explicit placement of memory pages. On non uniform data it is always a trade-off between these three principles, while the ideal strategy is strongly machine- and application dependent. In this paper we want to present some benchmarks of an AMG implementation based on a new performance library. Main focus is on the comparability to state-of-the-art solver packages regarding sequential performance as well as parallel scalability on common NUMA machines. To maximize throughput on standard model problems, several thread and memory configurations have been evaluated. We will show that even on large scale multi-core architectures easy parallel programming models, like OpenMP, can achieve a competitive performance compared to more complex programming models.
This is a preview of subscription content, access via your institution.
References
hypre homepage. https://computation.llnl.gov/casc/hypre/software.html, last viewed Dec 2010
hypre reference manual. https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_ref_manual.pdf, last viewed Jan 2011
hypre user’s manual. https://computation.llnl.gov/casc/hypre/download/hypre-2.6.0b_usr_manual.pdf, last viewed Jan 2011
Lama homepage. http://www.libama.org, last viewed Dec 2010
Petsc homepage. http://www.mcs.anl.gov/petsc/petsc-as/, last viewed Dec 2010
Petsc users manual. http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/docs/manual.pdf, last viewed Jan 2011
Blitz++ homepage. http://www.oonumerics.org/blitz/, last viewed Jan 2011
Gpi homepage. http://www.itwm.fraunhofer.de/abteilungen/competence-center-high-performance-computing/hpc-tools.html, last viewed Jan 2011
Unified parallel c homepage. http://upc.gwu.edu/, last viewed Jan 2011
Baker A, Schulz M, Yang U (2009) On the performance of an algebraic multigrid solver on multicore clusters. Tech rep, Lawrence Livermore National Laboratory (LLNL), Livermore, CA
Barrett R (1994) Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial Mathematics
Bell N, Garland M (2009) Efficient sparse matrix-vector multiplication on CUDA. In: Proc ACM/IEEE conf supercomputing (SC), Portland, OR, USA
Brandt A, McCormick S, Ruge J (1984) Algebraic multigrid (AMG) for sparse matrix equations. In: Evans DJ (ed) Sparsity and its applications. Cambridge University Press, Cambridge
De Sterck H, Yang U (2006) Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J Matrix Anal Appl 27:1019–1039
Kayi A, Kornkven E, El-Ghazawi T, Newby G (2008) Application performance tuning for clusters with ccnuma nodes. In: 2008 11th IEEE international conference on computational science and engineering, pp 245–252. IEEE
Kleen A (2005) A numa api for Linux. Novel Inc
Lenga T, Ali R, Celebioglu O, Hsieh J, Mashayekhi V, Rooholamini R (2003) The impact of hyper threading on communication performance in HPC clusters. In: Proceedings of the 17th annual international symposium on high performance computing systems and applications and the OSCAR symposium, May 11–14, 2003, Sherbrooke, Quebec, Canada. NRC Research Press, Ottawa, p 173
Nikolopoulos D, Artiaga E, Ayguadé E, Labarta J (2001) Exploiting memory affinity in OpenMP through schedule reuse. Comput. Archit. News 29(5):49–55
Ruge J, Stüben K (1987) Algebraic multigrid (AMG). In: McCormick SF (ed) Multigrid methods. Frontiers in applied mathematics, vol 3. SIAM, Philadelphia, pp 73–130
Terboven C Daily cc-numa craziness. http://terboven.wordpress.com/2009/12/02/daily-cc-numa-craziness/, last viewed Jan 2011
Terboven C, et al. (2008) Data and thread affinity in openmp programs. In: Proceedings of the 2008 workshop on memory access on future processors: a solved problem? ACM, New York, pp 377–384
Vandevoorde D, Josuttis N (2003) C++ templates: the complete guide. Addison-Wesley, Reading
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Förster, M., Kraus, J. Scalable parallel AMG on ccNUMA machines with OpenMP. Comput Sci Res Dev 26, 221–228 (2011). https://doi.org/10.1007/s00450-011-0159-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00450-011-0159-z
Keywords
- LAMA
- AMG
- OpenMP
- ccNUMA
- First Touch
- PETSc
- hypre