Challenges of medical image processing

  • Ingrid SchollEmail author
  • Til Aach
  • Thomas M. Deserno
  • Torsten Kuhlen
Special Issue Paper


In todays health care, imaging plays an important role throughout the entire clinical process from diagnostics and treatment planning to surgical procedures and follow up studies. Since most imaging modalities have gone directly digital, with continually increasing resolution, medical image processing has to face the challenges arising from large data volumes. In this paper, we discuss Kilo- to Terabyte challenges regarding (i) medical image management and image data mining, (ii) bioimaging, (iii) virtual reality in medical visualizations and (iv) neuroimaging. Due to the increasing amount of data, image processing and visualization algorithms have to be adjusted. Scalable algorithms and advanced parallelization techniques using graphical processing units have been developed. They are summarized in this paper. While such techniques are coping with the Kilo- to Terabyte challenge, the Petabyte level is already looming on the horizon. For this reason, medical image processing remains a vital field of research.


Medical imaging Bioimaging Neuroimaging Visualization Giga-Voxel Tera-Voxel Picture archiving and communication systems (PACS) Content-based image retrieval (CBIR) Virtual reality (VR) Graphics processing unit (GPU) programming Parallel algorithm Grid computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16(9):1055–1069 CrossRefGoogle Scholar
  2. 2.
    Axer M, Axer H, Grässel D, Amunts K, Zilles K, Pietrzyk U (2007) Nerve fiber mapping of the human visual cortex using polarized light imaging. IEEE Trans Nuclear Sci, pp 4345–4347 Google Scholar
  3. 3.
    Axer M, Dammers J, Grässel D, Amunts K, Pietrzyk U, Zilles K (2008) Nerve fiber mapping in histological sections of the human brain by means of polarized light. In: Conference Proceedings Human Brain Mapping, Melbourne Google Scholar
  4. 4.
    Basser PJ, Mattiello J, Lebihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267 CrossRefGoogle Scholar
  5. 5.
    Bertero MA, Poggio T, Torre V (1988) Ill-posed problems in early vision. Proc IEEE 76(8):869–889 CrossRefGoogle Scholar
  6. 6.
    Brennan DD, Whelan PF, Robinson K, Ghitta O, O’Brien JM, Sadleir R, Eustace SJ (2005) Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol 185(2):418–423 Google Scholar
  7. 7.
    Bryson S, Levit C (1991) The virtual windtunnel: an environment for the exploration of three-dimensional unsteady flows. In: IEEE Visualization’91, Proceedings, pp 17–24 Google Scholar
  8. 8.
    Corpetti T, Memin E, Perez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24(3):365–380 CrossRefGoogle Scholar
  9. 9.
    Coveney PV (2005) Scientific grid computing. Philos Transact A Math Phys Eng Sci 363(1833):1707–1713 CrossRefGoogle Scholar
  10. 10.
    Cuzol A, Memin E (2009) A stochastic filtering technique for fluid flow velocity fields tracking. IEEE Trans Pattern Anal Mach Intell 31(7):1278–1293 CrossRefGoogle Scholar
  11. 11.
    Danuser D, Waterman-Storer CM (2006) Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:361–387 CrossRefGoogle Scholar
  12. 12.
    Deserno TM, Güld MO, Plodowski B, Spitzer K, Wein BB, Schubert H, Ney H, Seidl T (2008) Extended query refinement for medical image retrieval. J Digit Imaging 21(3):280–289 CrossRefGoogle Scholar
  13. 13.
    Deserno TM, Antani S, Long R (2009) Ontology of gaps in content-based image retrieval. J Digit Imaging 22(2):202–215 CrossRefGoogle Scholar
  14. 14.
    Dorn JF, Danuser G, Yang G (2008) Computational processing and analysis of dynamic fluorescence image data. Methods Cell Biol 85:497–538 CrossRefGoogle Scholar
  15. 15.
    El-Kwae EA, Xu H, Kabuka MR (2000) Content-based retrieval in picture archiving and communication systems. J Digit Imaging 13(2):70–81 CrossRefGoogle Scholar
  16. 16.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741 zbMATHCrossRefGoogle Scholar
  17. 17.
    Gerlich D, Mattes J, Eils R (2003) Quantitative motion analysis and visualization of cellular structures. Methods 29(1):3–13 CrossRefGoogle Scholar
  18. 18.
    Gobbetti E, Marton F, Guitián JA (2008) A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. Visual. Computing 24:797–806 Google Scholar
  19. 19.
    Güld MO, Thies C, Fischer B, Lehmann TM (2007) A generic concept for the implementation of medical image retrieval systems. Int J Med Inform 76(2-3):252–259 CrossRefGoogle Scholar
  20. 20.
    Guthe S, Wand M, Gonser J, Strasser W (2002) Interactive rendering of large volume data sets. IEEE Trans Vis Comput Graph 9(3):53–60 Google Scholar
  21. 21.
    Handels H, Meinzer HP, Deserno TM, Tolxdorff T (2010) Advances and recent developments in medical image computing. Int J Comput Assist Radiol Surg. doi: 10.1007/s11548-010-0540-6
  22. 22.
    Hansen C, Johnson C (2004) The visualization handbook. Elsevier, Amsterdam Google Scholar
  23. 23.
    Haux R (2006) Health information systems. Past, present, future. Int J Med Inform 75:268–281 CrossRefGoogle Scholar
  24. 24.
    Haux R (2010) Medical informatics. Past, present, future. Int J Med Inform 79:599–610 CrossRefGoogle Scholar
  25. 25.
    Hentschel B, Bischof C, Kuhlen T (2007) Comparative visualization of human nasal airflows. Medicine meets virtual reality 15. IOS Press, Amsterdam Google Scholar
  26. 26.
    Hentschel B, Tedjo I, Probst M, Wolter M, Behr M, Bischof C, Kuhlen T (2008) Interactive blood damage analysis for ventricular assist devices. IEEE Trans Vis Comput Graph 14(6):1515–1522 CrossRefGoogle Scholar
  27. 27.
    Herberich G, Ivanescu A, Gamper I, Sechi A, Aach T (2010) Analysis of length and orientation of microtubules in wide-field fluorescence microscopy. Lect Notes Comput Sci 6376:182–191 CrossRefGoogle Scholar
  28. 28.
    Howison M, Bethel EW, Childs H (2010) MPI-hybrid parallelism for volume rendering on large, multi-core systems. In: Eurographics symposium on parallel graphics and visualization Google Scholar
  29. 29.
    Ihm S, Park I (1999) Wavelet-based 3D compression scheme for interactive visualization of very large volume data. Comput Graph Forum 18:3–15 CrossRefGoogle Scholar
  30. 30.
    von Kapri A, Rick T, Caspers S, Eickhoff S, Zilles T, Kuhlen K (2010) Evaluating a visualization of uncertainty in probabilistic tractography. In: Proc SPIE Med Imaging Google Scholar
  31. 31.
    Kölsch A, Windoffer S, Würflinger T, Aach T, Leube RE (2010) The keratin filament cycle of assembly and disassembly. J Cell Sci 123:2266–2272 CrossRefGoogle Scholar
  32. 32.
    Komodakis N, Tziritas G (2007) Approximate labeling via graph cuts based on linear programming. IEEE Trans Pattern Anal Mach Intell 29(8):1436–1453 CrossRefGoogle Scholar
  33. 33.
    Komodakis N, Tziritas G, Paragios N (2007) Fast, approximately optimal solutions for single and dynamic mrfs. In: IEEE Conf Comput Vis Patt Recogni, pp 1–8 Google Scholar
  34. 34.
    Lehmann TM, Güld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB (2004a) Content-based image retrieval in medical applications. Methods Inf Med 43(4):354–361 Google Scholar
  35. 35.
    Lehmann TM, Meinzer HP, Tolxdorff T (2004b) Advances in biomedical image analysis past, present and future challenges. Methods Inf Med 43(4):308–314 Google Scholar
  36. 36.
    Lehmann TM, Aach T, Witte H (2006) Sensor signal and image informatics. State Art Current Top 47(2):57–67 Google Scholar
  37. 37.
    Levoy M (1990) Efficient ray tracing of volume data. ACM Trans Graph 9(3):245–261 zbMATHCrossRefGoogle Scholar
  38. 38.
    Long LR, Antani S, Deserno TM, Thoma GR (2009) Content-based image retrieval in medicine. retrospective assessment, state of the art, and future directions. Int J Health Inform Syst Informat 4(1):1–16 Google Scholar
  39. 39.
    Manjunath BS, Sumengen B, Bi Z, Byun J, El-Saban M, Fedorov D, Vu N (2006) Towards automated bioimage analysis: from features to semantics. In: Proc IEEE Int Symp Biomed Imaging, pp 255–258 Google Scholar
  40. 40.
    Meijering E, Smal I, Danuser G (2006) Tracking in molecular bioimaging. IEEE Signal Process Mag 23(3):46–53 CrossRefGoogle Scholar
  41. 41.
    Müller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications. Clinical benefits and future directions. Int J Med Inform 73(1):1–23 CrossRefGoogle Scholar
  42. 42.
    Névéol A, Deserno TM, Darmonic SJ, Güld MO, Aronson AR (2009) Natural language processing versus content-based image analysis for medical document retrieval. J Am Soc Inf Sci Technol 60(1):123–134 CrossRefGoogle Scholar
  43. 43.
    de Oliveira JEE, Machado AMC, Chavez GC, Lopes APB, Deserno TM, Araujo A (2010) Mammosys: a content-based image retrieval system using breast density patterns. Comput Methods Programs Biomed 99(3):289–297 CrossRefGoogle Scholar
  44. 44.
    Palm C, Axer M, Grässel D, Dammers J, Lindemeyer J, Zilles L (2010) Towards ultra-high resolution fibre tract mapping of the human brain: registration of polarised light images and reorientation of fibre vectors. Front Human Neurosci 4(9):1–16 Google Scholar
  45. 45.
    Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158 CrossRefGoogle Scholar
  46. 46.
    Qi H, Snyder WE (1999) Content-based image retrieval in picture archiving and communications systems. J Digit Imaging 12(2):81–83 CrossRefGoogle Scholar
  47. 47.
    Racine V, Hertzog A, Jouanneau J, Salamero J, Kervrann C, Sibarita JB (2006) Multiple-target tracking of 3d fluorescent objects based on simulated annealing. In: Proc IEEE Int Symp Biomed Imaging, pp 1020–1023 Google Scholar
  48. 48.
    Reichertz PL (1977) Towards systematization. Methods Inf Med 16:125–130 Google Scholar
  49. 49.
    Reichertz PL (2006) Hospital information systems. Past, present, future. Int J Med Inform 75:282–299 CrossRefGoogle Scholar
  50. 50.
    Saban M, Altinok A, Peck A, Kenney C, Feinstein S, Wilson L, Rose K, Manjunath BS (2006) Automated tracking and modeling of microtubule dynamics. In: Proc IEEE int symp biomed imaging, pp 1032–1035 Google Scholar
  51. 51.
    Scholl I, Schubert N, Pietrzyk U (2010) GPU basiertes Volumenrendering von multimodalen medizinischen bilddaten in Echtzeit. In: Bildverarbeitung für die Medizin 2010. Algorithmen, Systeme, Anwendungen. Springer, Berlin Google Scholar
  52. 52.
    Shawn Mikula S, Trotts I, Stone JM, Jones EG (2007) Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage 35:9–15 CrossRefGoogle Scholar
  53. 53.
    Strengert M, Magallón M, Weiskopf D, Guthe S, Ertl T (2004) Hierarchical visualization and compression of large volume datasets using GPU clusters. In: Eurographics symposium on parallel graphics and visualization Google Scholar
  54. 54.
    Strengert M, Magallón M, Weiskopf D, Guthe S, Ertl T (2005) Large volume visualization of compressed time-dependent datasets on GPU clusters. Parallel Comput 31(2):205–219 CrossRefGoogle Scholar
  55. 55.
    Strengert M, Mueller C, Dachsbacher C, Ertl T (2008) CUDASA: Compute unified Device and Systems Architecture. In: Eurographics symposium on parallel graphics and visualization Google Scholar
  56. 56.
    Tagare HD, Jaffe CC, Duncan J (1997) Medical image databases: A content-based retrieval approach. J Am Med Inform Assoc 4(3):184–198 Google Scholar
  57. 57.
    Terzopoulos D (1988) The computation of visible surface representations. IEEE Trans Pattern Anal Mach Intell 10(4):417–438 zbMATHCrossRefGoogle Scholar
  58. 58.
    Trambert M (2006) Digital mammography integrated with pacs. real world issues, considerations, workflow solutions, and reading paradigms. Semin Breast Dis 9(2):75–81 CrossRefGoogle Scholar
  59. 59.
    van Dam A, Forsberg A, Leidlaw DH, LaViola J, Simpson RM (2000) Immersive virtual reality for scientific visualization: a progress report. IEEE Comput Graph Appl 20(6):26–52 CrossRefGoogle Scholar
  60. 60.
    Weickert J, Schnörr C (2001) A theoretical framework for convex regularizers in PDE-based computation of image motion. Int J Comput Vis 45(3):245–264 zbMATHCrossRefGoogle Scholar
  61. 61.
    Welter P, Hocken C, Deserno TM, Grouls C, Günther RW (2010) Workflow management of content-based image retrieval for cad support in pacs environments based on ihe. Int J Comput Assist Radiol Surg 5(4):393–400 CrossRefGoogle Scholar
  62. 62.
    Westermann B, Ertl T (1998) Efficiently using graphics hardware in volume rendering applications. In: Proceedings of SIGGRAPH’98, pp 169–178 Google Scholar
  63. 63.
    Würflinger T, Gamper I, Aach T, Sechi AS (2011) Automated segmentation and tracking for large scale analysis of focal adhesion dynamics. J Microsc 241:37–53 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ingrid Scholl
    • 1
    Email author
  • Til Aach
    • 2
  • Thomas M. Deserno
    • 3
  • Torsten Kuhlen
    • 4
  1. 1.Faculty of Electrical Engineering and Information TechnologyFH Aachen University of Applied SciencesAachenGermany
  2. 2.Institute of Imaging & Computer VisionRWTH Aachen UniversityAachenGermany
  3. 3.Department of Medical InformaticsUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
  4. 4.Virtual Reality GroupRWTH Aachen UniversityAachenGermany

Personalised recommendations