Advertisement

Computer Science - Research and Development

, Volume 26, Issue 1–2, pp 135–142 | Cite as

Contact-free volumetric measurement and documentation of facial turgors during the healing period after dental surgery

  • Christoph JohnEmail author
  • Ulrich Schwanecke
  • Dan Brüllmann
Special Issue Paper
  • 55 Downloads

Abstract

In this paper we present a cost-efficient system to empower the contact-free volumetric measurement of facial turgors, see Fig. 1. Our system enables the reliable measurement and documentation of therapy and healing processes of patients after dental surgeries. At different time intervals therefor textured depth data are captured with a structured light scanner to subsequently determine volumetric models of the turgor under investigation. The volumetric models are measured and documented and result in elaborate information about a patients anastasis after dental surgery. The presented system is currently used in a clinical study to analyze the healing period after third molar removal.

Keywords

Structured light Volumetric measurement Documentation Dental therapy analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell 9(5):698–700 CrossRefGoogle Scholar
  2. 2.
    Ballyns JJ, Cohen D, Malone E, Maher SA, Potter HG, Wright TM, Lipson H, Bonassar LJ (2009) An optical method for evaluation of geometric fidelity for anatomically shaped tissue engineered constructs. Tissue Eng, Part C Methods, Sep 29, 2009. Electronic publication ahead of print Google Scholar
  3. 3.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Besl PJ (1988) Active, optical range imaging sensors. Mach Vis Appl 1(2):127–152 CrossRefGoogle Scholar
  5. 5.
    Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256 CrossRefGoogle Scholar
  6. 6.
    Botsch M, Steinberg S, Bischoff S, Kobbelt L (2002) Openmesh-a generic and efficient polygon mesh data structure. In: OpenSG symposium Google Scholar
  7. 7.
    Bretschneider T, Koop U, Schreiner V, Wenck H, Jaspers S (2009) Validation of the body scanner as a measuring tool for a rapid quantification of body shape. Skin Res Technol 15, 364–369 CrossRefGoogle Scholar
  8. 8.
    Chaudhuri S, Rajagopalan AN (1999) Depth from defocus: a real aperture imaging approach. Springer, Berlin Google Scholar
  9. 9.
    Chen Y, Medioni G (1992) Object modeling by registration of multiple range images. Image Vis Comput 10(3):145–155 CrossRefGoogle Scholar
  10. 10.
    Creath K, Wyant JC (1992) Moiré and fringe projection techniques. In: Optical shop testing, Wiley, New York, pp 653–683 Google Scholar
  11. 11.
    Ens J, Lawrence P (1993) An investigation of methods for determining depth from focus. IEEE Trans Pattern Anal Mach Intell, pp 97–108 Google Scholar
  12. 12.
    Josten M, Rutschmann D, Massen R (2003) Messbar einfach: Mobiles und wirtschaftliches 3D Body Scanning in der Medizin mit dem MagicalSkin Scanner(TM). In: Bildverarbeitung für die Medizin. Springer, Berlin, pp 216–219 Google Scholar
  13. 13.
    Mehl ME, Meagher DJ (1982) Geometric modeling using octree-encoding. Comput Graph Image Process 19(2):129–147 CrossRefGoogle Scholar
  14. 14.
    Schwenzer-Zimmerer K, Boerner BI, Schwenzer NF, Mueller AA, Juergens P, Ringenbach A, Schkommodau E, Zeilhofer HF (2009) Facial acquisition by dynamic optical tracked laser imaging: a new approach. J Plast, Reconstr Aes Surg 62(9):1181–1186. Epub 2008 Jul 3 CrossRefGoogle Scholar
  15. 15.
    Shapiro L, Stockman GC (2001) Computer vision Google Scholar
  16. 16.
    Stein N, Minge B (1998) VIRO 3D: fast three-dimensional full-body scanning for humans and other living objects. Proc SPIE 3313:60–64 CrossRefGoogle Scholar
  17. 17.
    van der Zel JM (2008) Implant planning and placement using optical scanning and cone beam CT technology. J Prosthodont 17(6):476–481. Electronic publication 2008 May 9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christoph John
    • 1
    Email author
  • Ulrich Schwanecke
    • 1
  • Dan Brüllmann
    • 2
  1. 1.Dept. of DesignComputer Science and Media RheinMain University of Applied SciencesWiesbadenGermany
  2. 2.University Medical Center of the Johannes Gutenberg-UniversityMainzGermany

Personalised recommendations