Skip to main content
Log in

Enhanced bactericidal, antibiofilm and antioxidative response of Lawsonia inermis leaf extract synthesized ZnO NPs loaded with commercial antibiotic

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Globally, antibiotic resistance is a challenging issue in healthcare sector. The emergence of multiple drug-resistant bacteria has forced us to modify existing medicines and or formulate newer medicines that are effective and inexpensive. In this perspective, this study involves the formation of zinc oxide nanoparticles (ZnO NPs) by utilizing the Lawsonia inermis (Li) leaf extract. The prepared L. inermis leaf extract mediated ZnO NPs (Li-ZnO NPs) were bio-physically characterized. The antibacterial and radical scavenging effects of Li-ZnO NPs were evaluated. In addition, ZnO NPs were conjugated with standard antibiotic (ciprofloxacin) and its drug loading efficiency, drug release and antibacterial efficacy were tested and compared with non-drug loaded ZnO NPs. An absorbance peak at 340 nm was noted for Li-ZnO NPs. After conjugation with the drug, two absorbance peaks- one at 242 nm characteristic of ciprofloxacin and the other at 350 nm characteristics of ZnO NPs were observed. The crystallite size was 18.7 nm as determined by XRD. The antibacterial effect was higher on Gram-positive (S. aureus and S. pyogenes) than the Gram-negative pathogens (E. coli and K. pneumoniae). Inhibition of S. aureus and S. pyogenes biofilm at 100 μg mL−1were, respectively, 97.5 and 92.6%. H2O2 free radicals was inhibited to 90% compared to the standard ascorbic acid at 100 μg mL−1. After drug loading, the FTIR spectrum confirmed the existence of ciprofloxacin peaks at 965 cm−1 and Zn–O bond at 492 cm−1. The drug loading capacity of 15 nm sized ZnO NPs was higher (58, 75, 90 and 95% at 1, 2.5, 5 and 10% drug concentrations, respectively) compared to 20 nm. Similarly, the percentage of drug (ciprofloxacin) released from 15 nm ZnO NPs were increased to 90% at 10% drug-loaded samples, respectively. Also, the antibiotic loaded ZnO NPs had significant antibacterial effects against tested bacteria compared to Li-ZnO NPs and ciprofloxacin alone. This revealed that the antibiotic loaded ZnO NPs offer a sustainable route to treat multi-drug-resistant bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated during the current study are included in this published article.

References

  1. Kalpana VN, Katarua BAS, Sravania N, Vigneshwaria T, Panneerselvam B, Rajeswaria VD (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Article  Google Scholar 

  2. Matinise N, Fuku XG, Kaviyarasu K et al (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347

    Article  CAS  Google Scholar 

  3. Aminuzzaman M, Ying LP, Goh WS, Watanabe A (2018) Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci 41:50

    Article  Google Scholar 

  4. Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I (2017) Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater 2017:1–14

  5. Supraja N, Prasad TNVK, Krishna TG, David E (2016) Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl Nanosci 6:581–590

    Article  CAS  Google Scholar 

  6. Bala N, Saha S, Chakraborty M, Maiti M, Das S, Basub R et al (2015) Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv 5:4993–5003

    Article  CAS  Google Scholar 

  7. Khan MI, Shah S, Faisal S, Gul S, Khan S, Abdullah SSA, Shah WA (2022) Monotheca buxifolia driven synthesis of zinc oxide nano material its characterization and biomedical applications. Micromachines 13(5):668

    Article  PubMed  PubMed Central  Google Scholar 

  8. Al-Radadi NS, Abdullah FS, Alotaibi A, Ullah R, Hussain T, Rizwan M, Saira ZN, Iqbal M, Iqbal A, Ali Z (2022) Zingiber officinale driven bioproduction of ZnO nanoparticles and their anti-inflammatory, anti-diabetic, anti-Alzheimer, anti-oxidant, and anti-microbial applications. Inorg Chem Commun 140:109274

    Article  CAS  Google Scholar 

  9. Faisal S, Abdullah RM, Ullah R, Alotaibi A, Khattak A, Bibi N, Idrees M (2022) Paraclostridium benzoelyticum bacterium-mediated zinc oxide nanoparticles and their in vivo multiple biological applications. Oxid Med Cell Longev 2022:1–15

    Article  Google Scholar 

  10. Zafar S, Faisal S, Jan H, Ullah R, Rizwan M, Abdullah AA, Bibi N, Rashid AU, Khattak A (2022) Development of iron nanoparticles (FeNPs) using biomass of Enterobacter: Its characterization, antimicrobial, anti-Alzheimer’s, and enzyme Inhibition potential. Micromachines 13(8):1259

    Article  PubMed  PubMed Central  Google Scholar 

  11. Faisal S, Khan S, Abdullah ZS, Rizwan M, Ali M, Ullah R, Albadrani GM, Mohamed HRH, Akbar F (2022) Fagonia cretica-mediated synthesis of manganese oxide (MnO2) nanomaterials their characterization and evaluation of their bio-catalytic and enzyme inhibition potential for maintaining flavor and texture in apples. Catalysts 12(5):558

    Article  CAS  Google Scholar 

  12. Abdullah A-R, Hussain T, Faisal S, Shah SAR (2022) Novel biosynthesis, characterization and bio-catalytic potential of green algae (Spirogyra hyalina) mediated silver nanomaterials. Saudi J Biol Sci 29(1):411–419

    Article  CAS  PubMed  Google Scholar 

  13. Abdullah HT, Faisal S, Rizwan M, Saira ZN, Iqbal M, Iqbal A, Ali Z (2022) Green synthesis and characterization of copper and nickel hybrid nanomaterials: investigation of their biological and photocatalytic potential for the removal of organic crystal violet dye. J Saudi Chem Soc 26(4):101486

    Article  CAS  Google Scholar 

  14. Ullah R, Shah S, Muhammad Z, Shah SA, Faisal S, Khattak U, Haq Tu, Taj Akbar M (2021) In vitro and in vivo applications of Euphorbia wallichii shoot extract-mediated gold nanospheres. Green Process Synth 10(1):101–111

    Article  CAS  Google Scholar 

  15. Shah S, Shah SA, Faisal S, Khan A, Ullah R, Ali N, Bilal M (2022) Engineering novel gold nanoparticles using Sageretia thea leaf extract and evaluation of their biological activities. J Nanostruct Chem 12:129–140

    Article  CAS  Google Scholar 

  16. Faisal S, Jan H, Alam I, Rizwan M, Hussain Z, Sultana K, Ali Z, Uddin MN (2022) In vivo analgesic, anti-inflammatory, and anti-diabetic screening of Bacopa monnieri-synthesized copper oxide nanoparticles. ACS Omega 7(5):4071–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kainat KMA, Ali F, Faisal S, Rizwan M, Hussain Z, Zaman N, Afsheen Z, Uddin MN, Bibi N (2021) Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J Biol Sci 28(9):5157–5167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. ElSayed N, Ashour M, Amine AEK (2018) Vancomycin resistance among Staphylococcus aureus isolates in a rural setting. Egypt Germs 8(3):134–139

    Article  CAS  PubMed  Google Scholar 

  20. Ibrahim J, Eisen JA, Jospin G, Coil DA, Khazen G, Tokajian S (2016) Genome analysis of Streptococcus pyogenes associated with pharyngitis and skin infections. PLoS One 11(12):e0168177

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang SXT, Wong LS, Lim YM, Lee PF, Djearamane S (2020) Effects of zinc oxide nanoparticles on Streptococcus pyogenes. S Afr J Chem Eng 34:63–71

    Google Scholar 

  22. Ashmore DA, Chaudhari A, .Barlow B, Barlow B, Harper T, Vig K, Miller M, Singh S, Nelson E, Pillai S (2018) Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev Inst Med Trop São Paulo 60:e18

  23. Spagnolo AM, Orlando P, Panatto D (2014) An overview of carbapenem-resistant Klebsiella pneumoniae: epidemiology and control measures. Rev Med Microbiol 25:7–14

    Article  Google Scholar 

  24. Reygaert W (2018) An overview of the antimicrobial resistance mechanisms of bacteria. J AIMS Microbiol 4(3):482–501

    Article  CAS  Google Scholar 

  25. Blair JM, Richmond GE, Piddock LJ (2014) Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Fut Microbiol 9(10):1165–1177

    Article  CAS  Google Scholar 

  26. Randall C, Mariner K, Mariner KR, Chopra I, O’Neill AJ (2013) The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother 57(1):637–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51

    Article  CAS  PubMed  Google Scholar 

  28. Gold K, Slay B, Knackstedt M, Gaharwar A (2018) Antibacterial activity of metal and metal-oxide based nanoparticles. Adv Ther 1(3):1700033

    Article  Google Scholar 

  29. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  PubMed  Google Scholar 

  30. Turner R (2017) Metal-based antimicrobial strategies. Microb Biotechnol 10(5):1062–1065

    Article  PubMed  PubMed Central  Google Scholar 

  31. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65

    Article  Google Scholar 

  32. Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, Singh S (2021) Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep 11:8837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar KS, Kathireswari P (2016) Biological synthesis of silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int J Curr Microbiol Appl Sci 5(3):926–937

    Article  CAS  Google Scholar 

  34. Malaikozhundan B, Namagiri Lakshmi V, Krishnamoorthi R (2022) Copper oxide nanoparticles using Mentha spicata leaves as antibacterial, antibiofilm, free radical scavenging agent and efficient photocatalyst to degrade methylene blue dyes. Mater Today Commun 33:104348

    Article  CAS  Google Scholar 

  35. Senthamarai MD, Malaikozhundan B (2022) Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.)- Antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Mater Today Commun 30:103228

  36. Malaikozhundan B, Krishnamoorthi R, Vinodhini J, Nambi KSN, Palanisamy S (2022) Multifunctional iron oxide nanoparticles using Carica papaya fruit extract as antibacterial, antioxidant and photocatalytic agent to remove industrial dyes. Inorg Chem Commun 144:109843

    Article  CAS  Google Scholar 

  37. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79

    Article  PubMed  Google Scholar 

  38. CLSI (2004) Method for antifungal disk diffusion susceptibility testing of yeasts, approved guideline. CLSI document M44-A. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898, USA, 2004

  39. Chelliah R, Banan-Mwine Daliri E, Oh DH (2022) Screening for antioxidant activity: hydrogen peroxide scavenging assay. In: Dharumadurai D (ed) Methods in actinobacteriology. Springer protocols handbooks. Humana, New York. https://doi.org/10.1007/978-1-0716-1728-1_65

  40. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  Google Scholar 

  41. Arumugam M, Manikandan DB, Dhandapani E, Sridhar A, Balakrishnan K, Markandan M, Ramasamy T (2021) Green synthesis of zinc oxide nanoparticles (ZnO NPs) using Syzygium cumini: Potential multifaceted applications on antioxidants, cytotoxic and as nanonutrient for the growth of Sesamum indicum. Environ Technol Innov 23:101653

    Article  CAS  Google Scholar 

  42. Pillai AK, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Ronaldo AA, Rajesh K, Kyzas GZ (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107

    Article  CAS  Google Scholar 

  43. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2019) Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos B Eng 167:643–653

    Article  CAS  Google Scholar 

  44. Wijesinghe U, Thiripuranathar G, Iqbal H, Menaa F (2021) Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability 13(4):2004

    Article  CAS  Google Scholar 

  45. Ahmed S, Ali S, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284

    Article  CAS  Google Scholar 

  46. Fazlzadeh M, Khosravi R, Zarei A (2017) Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr(VI) from aqueous solution. Ecol Eng 103:180–190

    Article  Google Scholar 

  47. Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP (2018) Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys 203:40–48

    Article  CAS  Google Scholar 

  48. Naseer M, Aslam U, Khalid B, Chen B (2020) Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep 10:9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2014) Lawsonia inermis- mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8(3):172–178

    Article  CAS  PubMed  Google Scholar 

  50. Wang Q, Mei S, Manivel P, Ma H, Chen X (2022) Zinc oxide nanoparticles synthesized using coffee leaf extract assisted with ultrasound as nanocarriers for mangiferin. Curr Res Food Sci 5:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pranjali PM, Pooja MP, Maruti JD (2019) Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep 17:71–151

    Google Scholar 

  52. Malaikozhundan B, Vinodhini J (2018) Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Mater Today Commun 14:106–115

    Article  CAS  Google Scholar 

  53. Wijesinghe U, Thiripuranathar G, Menaa F, Iqbal H, Razzaq A, Almukhlifi H (2021) Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum. Catalysts 11(7):831

    Article  CAS  Google Scholar 

  54. Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, Rizwan M, Jan F, Akhtar N, Khattak A, Syed S (2021) Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 6(14):9709–9722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nimbalkar AR, Patil MG (2017) Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application. Physica B 527:7–15

    Article  CAS  Google Scholar 

  56. Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D (2018) Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbiol 9:2030

    Article  PubMed  PubMed Central  Google Scholar 

  57. Babayevska N, Przysiecka L, Iatsunskyi I et al (2022) ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep 12:8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Pandiselvi K, Kalanjiam MA, Murugan K, Benelli G (2017) Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog 104:268–277

    Article  CAS  PubMed  Google Scholar 

  59. Krishnamoorthy R, Athinarayanan J, Periyasamy VS, Alshuniaber MA, Alshammari G, Hakeem MJ, Ahmed MA, Alshatwi AA (2022) Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules 27(8):2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hsueh Y, Ke W, Hsieh C (2015) ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation. PLoS One 10(6):0128457

    Article  Google Scholar 

  61. Arunkumar M, Suhashini K, Mahesh N, Ravikumar R (2014) Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum. Bangladesh J Pharmacol 9(1):54–59

    Article  Google Scholar 

  62. Xie S, Zhu J, Yang D, Xu Y, Zhu J, He D (2021) Low concentrations of zinc oxide nanoparticles cause severe cytotoxicity through increased intracellular reactive oxygen species. J Biomed Nanotechnol 17(12):2420–2432

    Article  CAS  PubMed  Google Scholar 

  63. Al-Momani H, Al Balawi D, Hamed S, Albiss BA, Almasri M, AlGhawrie H, Ibrahim L, Al Balawi H, Mahmoud SA, Pearson J, Ward C (2023) The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci Rep 13:5096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Selim MS, Hamouda H, Hao Z et al (2020) Design of γ-AlOOH, γ-MnOOH, and α-Mn2O3 nanorods as advanced antibacterial active agents. Dalton Trans 49:8601–8613

    Article  CAS  PubMed  Google Scholar 

  65. Krishnamoorthi R, Srinivash M, Mahalingam PU, Malaikozhundan B, Suganya P, Gurushankar K (2022) Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products – an in vitro and in silico approach. Int J Biol Macromol 220:291–306

    Article  CAS  PubMed  Google Scholar 

  66. Parashant GK, Prashant PA, Utpal B et al (2015) In vitro antibacterial and cytotoxicity studies of ZnO nanopowders prepared by combustion assisted facile green synthesis. Karbala Int J Mod Sci 1(2):67–77

    Article  Google Scholar 

  67. Umar H, Kavaz D, Rizaner N (2018) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomed 14:87–100

    Article  Google Scholar 

  68. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2019) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 27:19151–19168

    Article  Google Scholar 

  69. Dhivya R, Ranjani J, Bowen PK, Rajendhran J, Mayandi J, Annaraj J (2017) Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater Sci Eng C 80:59–68

    Article  CAS  Google Scholar 

  70. Huang X, Zheng X, Xu Z, Yi C (2017) ZnO-based nanocarriers for drug delivery application: from passive to smart strategies. Int J Pharm 534:190–194

    Article  CAS  PubMed  Google Scholar 

  71. George D, Maheswari PU, Begum KMS (2019) Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 132:784–794

    Article  CAS  PubMed  Google Scholar 

  72. Shetti NP, Malode SJ, Nayak DS, Bagihalli GB, Kalanur SS, Malladi RS, Reddy CV, Aminabhavi TM, Reddy KR (2019) Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl Surf Sci 496:143656

    Article  CAS  Google Scholar 

  73. Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G (2001) Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 22:2857–2865

    Article  CAS  PubMed  Google Scholar 

  74. Palanikumar L, Ramasamy S, Hariharan G, Balachandran C (2013) Influence of particle size of nano zinc oxide on the controlled delivery of Amoxicillin. Appl Nanosci 3:441–451

    Article  CAS  Google Scholar 

  75. Kamal R, Razzaq A, Shah KA, Khan ZU, Khan NU, Menaa F, Iqbal H, Cui J (2023) Evaluation of cephalexin-loaded PHBV nanofibers for MRSA-infected diabetic foot ulcers treatment. J Drug Deliv Sci Technol 85:104583

    Article  Google Scholar 

  76. Akbar N, Aslam Z, Siddiqui R, Raza Shah M, Ahmed Khan N (2021) Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Expr 11:104

    Article  CAS  Google Scholar 

  77. Souza RCD, Haberbeck LU, Riella HG, Ribeiro DH, Carciofi BA (2019) Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz J Chem Eng 36(2):885–893

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biology, GRI for supporting lab facilities. The authors also thank the Department of Chemistry, GRI for their help in sample analysis using analytical instrumental facilities.

Funding

No funding has been received.

Author information

Authors and Affiliations

Authors

Contributions

BM: investigation, conceptualization, methodology and writing original draft, review, editing and statistics. SM: investigation, methodology, data curation and review. RK: methodology, review and editing. PVB: review and editing. SP: methodology, writing original draft and statistics. JV: methodology, data curation, formal analysis, conceptualization and validation.

Corresponding author

Correspondence to Balasubramanian Malaikozhundan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 121 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaikozhundan, B., Mohandoss, S., Krishnamoorthi, R. et al. Enhanced bactericidal, antibiofilm and antioxidative response of Lawsonia inermis leaf extract synthesized ZnO NPs loaded with commercial antibiotic. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03000-9

Keywords

Navigation