Skip to main content
Log in

Characterization of hypersaline Oklahoma native microalgae cultivated in flowback and produced water: growth profile and contaminant removal

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work explores the potential of three hypersaline native microalgae strains from Oklahoma, Geitlerinema carotinosum, Pseudanabaena sp., and Picochlorum oklahomensis, for simultaneous treatment of flowback (FW) and produced wastewater (PW) and the production of algal biomass. The quality of wastewater before and after treatment with these microalgae strains was evaluated and a characterization of algal biomass in terms of moisture, volatile matter, fixed carbon, and ash contents was assessed. The experimental results indicated how all the microalgae strains were able to grow in both FW and PW, revealing their potential for wastewater treatment. Although algal biomass production was limited by nutrient availability both in PW and FW, a maximum biomass concentration higher than 1.35 g L−1 were achieved by the three strains in two of the PWs and one of the FWs tested, with Pseudanabaena sp. reaching nearly 2 g L−1. Interestingly, higher specific growth rates were obtained by the two cyanobacteria strains G. carotinosum and Pseudanabaena sp. when cultivated in both PW and FW, compared to P. oklahomensis. The harvested algal biomass contained a significant amount of energy, even though it was significantly reduced by the very high salt content. The energy content fell within the recommended range of 16–17 MJ kg−1 for biomass as feedstock for biofuels. The algal treatment resulted in the complete removal of ammonia from the wastewater and a significant reduction in contaminants, such as nitrate, phosphate, boron, and micronutrients like zinc, manganese, and iron.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang Y, Mao J, Mao J, Chen A, Yang X, Lin C, Wei Z, Huang X, Song L, Tang F, Jiang Q, Ni Y (2022) Towards sustainable oil/gas fracking by reusing its process water: a review on fundamentals, challenges, and opportunities. J Petrol Sci Eng 213:110422. https://doi.org/10.1016/j.petrol.2022.110422

    Article  CAS  Google Scholar 

  2. Oetjen K, Giddings CGS, McLaughlin M, Nell M, Blotevogel J, Helbling DE, Mueller D, Higgins CP (2017) Emerging analytical methods for the characterization and quantification of organic contaminants in flowback and produced water. Trends Environ Anal Chem 15:12–23. https://doi.org/10.1016/j.teac.2017.07.002

    Article  CAS  Google Scholar 

  3. Fajfer J, Lipińska O, Konieczyńska M (2022) Hydraulic fracturing flowback chemical composition diversity as a factor determining possibilities of its management. Environ Sci Pollut Res 29:16152–16175. https://doi.org/10.1007/s11356-021-16432-7

    Article  CAS  Google Scholar 

  4. Scanlon BR, Ikonnikova S, Yang Q, Reedy RC (2020) Will water issues constrain oil and gas production in the United States? Environ Sci Technol 54(6):3510–3519. https://doi.org/10.1021/acs.est.9b06390

    Article  CAS  PubMed  Google Scholar 

  5. Techsciresearch.com. https://www.techsciresearch.com/report/north-america-hydraulic-fracturing-market/4450.html. Accessed 12 Apr 202

  6. U.S. Energy Information Administration (2020) Technically recoverable shale oil and shale gas resources: USA

  7. Gallegos TJ, Varela BA, Haines SS, Engle MA (2015) Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resour Res 51(7):5839–5845. https://doi.org/10.1002/2015WR017278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kondash AJ, Lauer NE, Vengosh A (2018) The intensification of the water footprint of hydraulic fracturing. Sci Adv 4(8):5982. https://doi.org/10.1126/sciadv.aar5982

    Article  CAS  Google Scholar 

  9. Zhong C, Zolfaghari A, Hou D, Goss GG, Lanoil BD, Gehman J, Tsang DCW, He Y, Alessi DS (2021) Comparison of the hydraulic fracturing water cycle in China and North America: a critical review. Environ Sci Technol 55:7167–7185. https://doi.org/10.1021/acs.est.0c061192016

    Article  CAS  PubMed  Google Scholar 

  10. Kondash AJ, Albright E, Vengosh A (2017) Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci Total Environ 574:314–321. https://doi.org/10.1016/j.scitotenv.2016.09.069

    Article  CAS  PubMed  Google Scholar 

  11. U.S. Environmental Protection Agency (2016) Hydraulic fracturing for oil and gas: impacts from the hydraulic fracturing water cycle on drinking water resources in the United States (Final Report). Washington, DC, EPA/600/R-16/236F. www.epa.gov/hfstudy. Accessed 15 Apr 2023

  12. Emmons RV, Shyma Sunder GS, Liden T, Schug KA, Asfaha TY, Lawrence JG, Kirchhoff JR, Gionfriddo E (2022) Unraveling the complex composition of produced water by specialized extraction methodologies. Environ Sci Technol 56(4):2334–2344. https://doi.org/10.1021/acs.est.1c05826

    Article  PubMed  Google Scholar 

  13. Miranda MA, Ghosh A, Mahmodi G, Xie S, Shaw M, Kim S, Krzmarzick MJ, Lampert DJ, Aichele CP (2022) Treatment and recovery of high-value elements from produced water. Water 14(6):880. https://doi.org/10.3390/w14060880

    Article  CAS  Google Scholar 

  14. Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na DA (2019) Produced water characteristics, treatment and reuse: a review. J Water Process Eng 28:222–239. https://doi.org/10.1016/j.jwpe.2019.02.001

    Article  Google Scholar 

  15. Clark CE, Veil JA (2009) Produced water volumes and management practices in the United States; United States Department of Energy, Argonne National Laboratory: DuPage County. IL, USA

    Google Scholar 

  16. Veil J (2020) U.S. Produced water volumes and maagement practices in 2017. Ground Water Research and Education Foundation. pp 1–137 https://www.veilenvironmental.com/publications/pw/pdf

  17. Cordes EE, Jones DOB, Schlacher TA, Amon DJ, Bernardino AF, Brooke S, Carney R, DeLEo DM, Dunlop KM, Escobar-Briones EG, Gates AR, Gènio L, Gobin J, Henry L-A, Herrera S, Hoyt S, Joye M, Kark S, Mestre NC, Metaxas A, Pfeifer S, Sink K, Sweetman AK, Witte U (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Environ Sci 4:58. https://doi.org/10.3389/fenvs.2016.00058

    Article  Google Scholar 

  18. Torres L, Yadav OP, Khan E (2016) A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Sci Total Environ 539:478–493. https://doi.org/10.1016/j.scitotenv.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  19. Wertz J (December 9, 2016). Oklahoma oil regulators adding limits on fracking to earthquake-reduction plan. NPR. Accessed 6 Mar 2023

  20. Gamwo IK, Azam HM, Baled HO (2022) Produced water treatment technologies: an overview. OSTI.GOV. https://www.osti.gov/servlets/purl/1873997. Accessed 16 Apr 2023

  21. Srimongkol P, Sangtanoo P, Songserm P, Watsuntorn W, Karnchanatat A (2022) Microalgae-based wastewater treatment for developing economic and environmental sustainability: current status and future prospects. Front Bioeng Biotechnol Sect Ind Biotechnol 10:904046. https://doi.org/10.3389/fbioe.2022.904046

    Article  Google Scholar 

  22. Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho S-H, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J (2023) Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects. Environ Sci Ecotechnol 13:100205. https://doi.org/10.1016/j.ese.2022.100205

    Article  CAS  PubMed  Google Scholar 

  23. Sullivan Graham EJ, Dean CA, Yoshida TM, Twary SN, Teshima M, Alvarez MA, Zidenga T, Heikoop JM, Perkins GB, Rahn TA, Wagner GL, Laur PM (2017) Oil and gas produced water as a growth medium for microalgae cultivation: a review and feasibility analysis. Algal Res. https://doi.org/10.1016/j.algal.2017.01.009

    Article  Google Scholar 

  24. Concas A, Lutzu GA, Dunford NT (2021) Experiments and modeling of Komvophoron sp. growth in hydraulic fracturing wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131299

    Article  Google Scholar 

  25. Alsarayreh M, Almomani F, Khraisheh M, Nasser MS, Soliman Y (2022) Biological-based produced water treatment using microalgae: challenges and efficiency Sustainability 14:499. https://doi.org/10.3390/su14010499

    Article  CAS  Google Scholar 

  26. Lutzu GA, Concas A, Dunford NT (2022) Microalgae growth in physically pre-treated wastewater generated during hydraulic fracturing. Chem Eng Trans 92:661–666. https://doi.org/10.3303/CET2292111

    Article  Google Scholar 

  27. Lutzu GA, Marin MA, Concas A, Dunford NT (2021) Nutrient enrichment of wastewater generated during hydraulic fracturing with animal wastewater to enhance microalgae growth. Chem Eng Trans 86:115–120. https://doi.org/10.3303/CET2186020

    Article  Google Scholar 

  28. Vo HNP, Ngo HH, Guo W, Chang SW, Nguyen DD, Chen Z, Wang XC, Chen R, Zhang X (2020) Microalgae for saline wastewater treatment: a critical review. Crit Rev Environ Sci Technol 50(12):1224–1265. https://doi.org/10.1080/10643389.2019.1656510

    Article  CAS  Google Scholar 

  29. Kirkwood AE, Buchheim JA, Buchheim MA, Henley WJ (2008) Cyanobacterial diversity and halotolerance in a variable hypersaline environment. Microbial Ecol 55(3):453–465. https://doi.org/10.1007/s00248-007-9291-5

    Article  Google Scholar 

  30. Kochhar N, Kavya IK, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microb Sci 3:100134. https://doi.org/10.1016/j.crmicr.2022.100134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Osundeko O, Dean AP, Davies H, Pittman JK (2014) Acclimatation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol 55(10):1848–1857. https://doi.org/10.1093/pcp/pcu113

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Y, Dunford NT (2013) Growth and biomass characteristics of Picochlorum oklahomensis and Nannochloropsis oculata. J Am Oil Chem Soc 90(6):841–849. https://doi.org/10.1007/s11746-013-2225-0

    Article  CAS  Google Scholar 

  33. UTEX, The culture collection of algae at the University of Texas at Austin (UTEX). https://utex.org/. Accessed 12 Dec 2022

  34. NCMA, The National Center for Marine Algae and Microbiota at Boothbay, Maine (NCMA). https://ncma.bigelow.org/. Accessed 12 Dec 2022

  35. Krasovec M, Vancaester E, Rombauts S, Bucchini F, Yau S, Hemon C, Lebredonchel H, Grimsley N, Moreau H, Sanchez-Brosseau S, Vandepoele K, Piganeau G (2018) Genome analysis of the microalga Picochlorum insights into the evolution of thermotolerance in the green lineage. Genome Biol Evol 10(9):2347–2365. https://doi.org/10.1093/gbe/evy167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huesmann M, Gao S, Edmundson S, Gao S, Negi S, Dale T, Gutknecht A, Daligault HE, Carr CK, Freeman J, Kern T, Starkenburg SR, Gleasner CD, Louie W, Kruk R, McGuire S (2023) DISCOVER strain pipeline screening - part I: maximum specific growth rate as a function of temperature and salinity for 38 candidate microalgae for biofuels production. Algal Res 71:102996. https://doi.org/10.1016/j.algal.2023.102996

    Article  Google Scholar 

  37. Anagnostidis K (1989) Geitlerinema, a new genus of oscillatorialean cyanophytes. Plant Syst Evol 164:33–46. https://doi.org/10.1007/BF00940428

    Article  Google Scholar 

  38. Dvořák P, Casamatta DA, Hašler P, Jahodářová E, Norwich AR, Poulíčková A (2017) Diversity of the Cyanobacteria. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-46261-5_1

    Chapter  Google Scholar 

  39. Strunecký O, Bohunická M, Johansen JR, Čapková K, Raabová L, Dvořák P, Komárek JA (2017) Revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen nov (Oscillatoriophycidae, Cyanobacteria). Fottea 17(1):114–126

    Article  Google Scholar 

  40. Patel SN, Sonani RR, Roy D, Kimar Singh N, Subudhi S, Pabbi S, Madamwar D (2022) Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 12:224. https://doi.org/10.1007/s13205-022-03284-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4. https://doi.org/10.1016/j.biortech.2013.03.197

    Article  CAS  PubMed  Google Scholar 

  42. Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84(5):487–494. https://doi.org/10.1016/j.fuel.2004.10.010

    Article  CAS  Google Scholar 

  43. American Public Health Association-APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Water Works Association, Water Pollution Control Federation, pp 2–48

    Google Scholar 

  44. U.S. Environmental Protection Agency (1980) Standard Method 5220 D, in Federal Register. pp 268111–26812.

  45. Frac Focus Chemical Disclosure Registry-FFCDR (2019) Accessed 26 Jan 2023

  46. Benko KL, Drewes JE (2008) Produced water in the Western United States: geographical distribution, occurrence, and composition. Environ Eng Sci 25(2):239–246. https://doi.org/10.1089/ees.2007.0026

    Article  CAS  Google Scholar 

  47. Hu L, Jiang W, Xu X, Wang H, Carroll KC, Xu P, Zhang Y (2022) Toxicological characterization of produced water from the Permian Basin. Sci Total Environ 815:152943. https://doi.org/10.1016/j.scitotenv.2022.152943

    Article  CAS  PubMed  Google Scholar 

  48. Cluff MA, Hartsock A, MacRae JD, Carter K, Mouser PJ (2014) Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Environ Sci Technol 48(11):6508–6517. https://doi.org/10.1021/es501173p

    Article  CAS  PubMed  Google Scholar 

  49. NAABB (2014) The National Alliance for Advanced Biofuels and Bioproducts Final Report. Department of Energy, USA

  50. Lammers PJ, Huesemann M, Boeing W, Anderson DB, Arnold RG, Bai X, Bhole M, Brhanavan Y, Brown L, Brown J, Brown JK, Chisholm S, Downes CM, Fulbright S, Ge Y, Holladay JE, Ketheesan B, Khopkar A, Koushik A, Laur P, Marrone BL, Mott JB, Nirmalakhhandan N, Ogden KL, Parsons RL, Polle J, Ryan RD, Samocha T, Sayre RT, Seger M, Selvaratnam T, Sui R, Thomasson A, Unc A, Van Voorhies W, Waller P, Yao Y, Olivares JA (2017) Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res 22:166–186. https://doi.org/10.1016/j.algal.2016.11.021

    Article  Google Scholar 

  51. Lutzu GA, Dunford NT (2019) Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology. Environ Technol 40(8):1027–1034. https://doi.org/10.1080/09593330.2017.1415983

    Article  CAS  PubMed  Google Scholar 

  52. Racharaks R, Ge X, Li Y (2015) Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium. Bioresour Technol 191:146–156. https://doi.org/10.1016/j.biortech.2015.04.065

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Lu L, Chen X, Bian Y, Zhiyong Jason Ren ZJ (2019) Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Res 164:114942. https://doi.org/10.1016/j.watres.2019.114942

    Article  CAS  PubMed  Google Scholar 

  54. Nayak S, Prasanna N (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5(2):103–113. https://doi.org/10.15666/aeer/0502_103113

    Article  Google Scholar 

  55. Geisert M, Rose T, Bauer W, Zahn RH (1987) Occurence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics. Biosystems 20:133–142

    Article  CAS  PubMed  Google Scholar 

  56. Belohlav V, Xakova T, Jirout T, Kratky L (2020) Effect of hydrodynamics on the formation and removal of microalgal biofilm in photobioreactors. Biosyst Eng 200:315–327. https://doi.org/10.1016/j.biosystemseng.2020.10.014

    Article  Google Scholar 

  57. Lutzu GA, Dunford NT (2019) Growing algae in produced water generated during oil and gas production using hydraulic fracturing technology. Chem Eng Trans 74:1261–1266. https://doi.org/10.3303/CET1974211

    Article  Google Scholar 

  58. Yaakob MA, Radin Mohamed RMS, Al-Gheethi A, Gokare RA, Ambati RR (2021) Influence of nitrogen and phosphorous on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells 10(2):393. https://doi.org/10.3390/cells10020393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mayers JJ, Vaiciulyte S, Malmhäll-Bah E, Alcaide-Sancho J, Ewald S, Godhe A, Ekendahl S, Albers E (2018) Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation. Algal Res 31:430–442. https://doi.org/10.1016/j.algal.2018.02.034

    Article  Google Scholar 

  60. Lutzu GA, Locci AM, Cao G (2012) Effect of medium composition on the growth of Nannochloris eucaryotum in batch photobioreactors. J Biobased Mater Bioenergy 6(1):94–100. https://doi.org/10.1166/jbmb.2012.1184

    Article  CAS  Google Scholar 

  61. Somogyi B, Felfoldi T, Solymosi K, Flieger K, Márialigeti K, Bӧddi B (2013) One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. Nov. (Trebouxiophyceae, Chlorophyta). Eur J Phy 48(4):427–436. https://doi.org/10.1080/09670262.2013.854411

    Article  Google Scholar 

  62. Zhou N, Dunford NT (2017) Characterization of green microalgae and cyanobacteria isolated from Great Salt Plains. Trans ASABE 60(2):283–290. https://doi.org/10.13031/trans.12136

    Article  CAS  Google Scholar 

  63. Liu J, Vyverman W (2015) Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions. Bioresour Technol 179:234–242. https://doi.org/10.1016/j.biortech.2014.12.028

    Article  CAS  PubMed  Google Scholar 

  64. Erratt K, Creed I, Chemali C, Ferrara A, Tai V, Trick C (2021) Performance and competitiveness of red vs. green phenotypes of a cyanobacterium grown under artificial lake browing. Algae 36(3):195–206. https://doi.org/10.4490/algae.2021.36.7.19

    Article  CAS  Google Scholar 

  65. Miazek K, Kratky L, Sulc R, Jirout T, Aguedo M, Richel A, Goffin D (2017) Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: a review. Int J Mol Sci 18:1429–1460. https://doi.org/10.3390/ijms18071429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kirtania K, Bhattacharya S (2013) Pyrolysis kinetics and reactivity of algae—coal blends. Biomass Bioenergy 55:291–298. https://doi.org/10.1016/j.biombioe.2013.02.019

    Article  CAS  Google Scholar 

  67. Haugstad BH (2017) Fuel characterization and process analysis of hydrothermal liquefacion of algae, in Engineering Sciences. University of Agder, Grimstad, Norway, p 101

    Google Scholar 

  68. Sukarni S (2020) Thermogravimetric analysis of the combustion of marine microalgae Spirulina platensis and its blend with synthetic waste. Helyon 6(9):e04902. https://doi.org/10.1016/j.heliyon.2020.e04902

    Article  CAS  Google Scholar 

  69. Ebhodaghe SO, Imanah OE, Ndibe H (2022) Biofuels from microalgae: a review of conversion processes and procedures. Arab J Chem 15(2):103591. https://doi.org/10.1016/j.arabjc.2021.103591

    Article  CAS  Google Scholar 

  70. Dębowski M, Zielinski M, Swica I, Kazimierowicz J (2021) Algal biomass as a potential source of liquid fuels. Phycol 1(2):105–118. https://doi.org/10.3390/phycology1020008

    Article  Google Scholar 

  71. Guo L, Xie Y, Sun W, Xu Y, Sun Y (2023) Research progress of high-salinity wastewater treatment technology. Water 15(4):684. https://doi.org/10.3390/w15040684

    Article  CAS  Google Scholar 

  72. Arunkumar BR, Thippeshappa GN, Anjali MC, Prashanth KM (2018) Boron: a critical micronutrient for crop growth and productivity. J Pharmacogn Phytochem 7(2):2378–2741

    Google Scholar 

  73. Saavedra R, Muñoz R, Taboada ME, Vega M, Bolado S (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour Technol 263:49–57. https://doi.org/10.1016/j.biortech.2018.04.101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Oklahoma Center for the Advancement of Science and Technology, Basic Plant Science Program, Project # PS13-007 and Oklahoma Water Resources Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Giovanni Antonio Lutzu. The first draft of the manuscript was written by Giovanni Antonio Lutzu and all authors commented on previous versions of the manuscript. Alessandro Concas and Nurhan Turgut Dunford performed reviewing, editing, and supervision. All the authors take responsibility for the integrity of the whole work and approve its final version to be submitted.

Corresponding author

Correspondence to Giovanni Antonio Lutzu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutzu, G.A., Concas, A. & Dunford, N.T. Characterization of hypersaline Oklahoma native microalgae cultivated in flowback and produced water: growth profile and contaminant removal. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-02992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-02992-8

Keywords

Navigation