Skip to main content
Log in

Sustainable trehalose lipid production by Rhodotorula sp.: a promising bio-based alternative

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Global environmental concerns drive research toward the development of new eco-friendly compounds to replace pollutant chemicals. This study focuses on optimizing the production of trehalose lipids (TLs), which are glycolipid biosurfactants (BS) with various applications like antimicrobial or surface tension reduction. New microorganism sources, growth conditions, medium composition, purification conditions, and physicochemical properties of TLs are studied. Addressing a microscale approach, TLs production was successfully achieved using Rhodotorula sp. and Rhodococcus erythropolis to compare, with different media compositions including glucose-based and salt media supplemented with glycerol, glucose, n-hexadecane, n-dodecane. Liquid–liquid extraction using ethyl acetate and methanol was employed for compound extraction, followed by characterization using analytical methods such as Thin layer chromatography (TLC), High performance liquid chromatography (HPLC), and UHPLC. The produced TLs exhibited a minimum surface tension of 47 mN/m and a critical micellar concentration of 4.4 mg/mL. This study also identified Rhodotorula sp. as a new sustainable producer of TLs with improved productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analyzed in this study are included in the published manuscript or its supplementary information file.

References

  1. Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112(6):617–627

    Article  CAS  Google Scholar 

  2. Kuyukina MS, Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. Microbiol Monogr 16:291–313

    Article  Google Scholar 

  3. Shekhar S, Sundaramanickam A, Balasubramanian T (2015) Biosurfactant producing microbes and their potential applications: a review. Crit Rev Environ Sci Technol 45(14):1522–1554

    Article  CAS  Google Scholar 

  4. Geys R, Soetaert W, Van BI (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  PubMed  Google Scholar 

  5. Sana S, Datta S, Biswas D, Sengupta D (2018) Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim Biophys Acta Biomembr 1860(2):579–585

    Article  CAS  PubMed  Google Scholar 

  6. Solaiman DKY, Ashby RD, Birbir M, Caglayan P (2016) Antibacterial activity of sophorolipids produced by Candida bombicola on Gram-positive and Gram-negative bacteria isolated from salted hides. J Am Leather Chem Assoc 111:358–364

    CAS  Google Scholar 

  7. Sarwar A, Brader G, Corretto E, Aleti G, Ullah MA, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13(6):1–15

    Article  Google Scholar 

  8. Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S (2016) Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha) 61(1):85–89

    Article  CAS  PubMed  Google Scholar 

  9. Fracchia L, Cavallo M, Martinotti MG, Banat IM (2012) Biosurfactants and bioemulsifiers biomedical and related applications—present status and future potentials. In: Biomedical science, engineering and technology. https://doi.org/10.5772/23821

  10. Cortés-Sánchez AJ, Hernández-Sánchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168(1):22–32

    Article  PubMed  Google Scholar 

  11. Morita T, Fukuoka T, Imura T, Kitamoto D (2016) Glycolipid biosurfactants. Elsevier

    Book  Google Scholar 

  12. Ribeiro MH, Fahr E, Lopes S (2022) From glycolipids biosynthesis to biological activity toward therapeutic application. In: Gupta KV, Sarker SD, Sharma M, Pirovani ME, Usmani Z, Jayabaskaran C (eds) Biomolecules from natural sources: advances and applications. Wiley, pp 1–30

    Google Scholar 

  13. Warnecke D, Heinz E (2010) Glycolipid headgroup replacement : a new approach for the analysis of specific functions of glycolipids in vivo. Eur J Cell Biol 89(1):53–61

    Article  CAS  PubMed  Google Scholar 

  14. Patil HI, Pratap AP (2018) Production and quantitative analysis of trehalose lipid biosurfactants using high-performance liquid chromatography. J Surfact Deterg 21(4):553–564

    Article  CAS  Google Scholar 

  15. Kuyukina MS, Kochina OA, Gein SV, Ivshina IB, Chereshnev VA (2020) Mechanisms of immunomodulatory and membranotropic activity of trehalolipid biosurfactants (a review). Appl Biochem Microbiol 56(3):245–255

    Article  CAS  Google Scholar 

  16. Bell KS, Philp JC, Aw DWJ, Christofi N (1998) A review: the genus Rhodococcus. J Appl Microbiol 85(2):195–210

    Article  CAS  PubMed  Google Scholar 

  17. Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T (1989) Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem 53(3):757–763

    CAS  Google Scholar 

  18. Marchant R, Funston S, Uzoigwe C, Rahman P, Banat I (2014) Production of biosurfactants from nonpathogenic bacteria. In: Biosurfactants. pp 73–82

  19. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):1–31

    Article  Google Scholar 

  20. Chang JS, Radosevich M, Jin Y, Cha DK (2004) Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ Toxicol Chem 23(12):2816–2822

    Article  PubMed  Google Scholar 

  21. Christova N, Lang S, Wray V, Kaloyanov K, Konstantinov S, Stoineva I (2015) Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J Microbiol Biotechnol 25(4):439–447

    Article  CAS  PubMed  Google Scholar 

  22. Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV (2016) Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tokumoto Y, Nomura N, Uchiyama H, Imura T, Morita T, Fukuoka T, Kitamoto D (2009) Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J Oleo Sci 102(2):97–102

    Article  Google Scholar 

  24. Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C–9 and its biosurfactants. J Appl Microbiol 102(6):1603–1611

    Article  CAS  PubMed  Google Scholar 

  25. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microbiol 79(22):7082–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramsay B, McCarthy J, Guerra-Santos L, Kappeli O, Fiechter A, Margaritis A (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can J Microbiol 34(11):1209–1212

    Article  CAS  Google Scholar 

  27. Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94(3):187–201

    Article  CAS  PubMed  Google Scholar 

  28. Kügler JH, Muhle-Goll C, Kühl B, Kraft A, Heinzler R, Kirschhöfer F, Henkel M, Wray V, Luy B, Brenner-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98(21):8905–8915. https://doi.org/10.1007/s00253-014-5972-4

    Article  CAS  PubMed  Google Scholar 

  29. Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31(7):1001–1020

    Article  CAS  PubMed  Google Scholar 

  30. White DA, Hird LC, Ali ST (2013) Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115(3):744–755

    Article  CAS  PubMed  Google Scholar 

  31. Janek T, Krasowska A, Czyżnikowska Ż, Łukaszewicz M (2018) Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Front Microbiol 9:1–14

    Article  Google Scholar 

  32. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46(2):149–156

    Article  CAS  PubMed  Google Scholar 

  34. Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99(16):7875–7880

    Article  CAS  PubMed  Google Scholar 

  35. Kashif A, Rehman R, Fuwad A, Shahid MK, Dayarathne HNP, Jamal A, Aftab MN, Mainali B, Choi Y (2022) Current advances in the classification, production, properties and applications of microbial biosurfactants—a critical review. Adv Colloid Interface Sci 306:102718

    Article  CAS  PubMed  Google Scholar 

  36. Zaragoza A, Teruel JA, Aranda FJ, Ortiz A (2013) Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2. J Colloid Interface Sci 408(1):132–137

    Article  CAS  PubMed  Google Scholar 

  37. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. https://doi.org/10.1093/jac/d

    Article  CAS  PubMed  Google Scholar 

  38. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  40. Nunes MAP, Vila-Real H, Fernandes PCB, Ribeiro MHL (2010) Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Appl Biochem Biotechnol 160:2129–2147

    Article  CAS  PubMed  Google Scholar 

  41. Nunes MAP, Fernandes PCB, Ribeiro MHL (2012) High-affinity water-soluble system for efficient naringinase immobilization in polyvinyl alcohol–dimethyl sulfoxide lens-shaped particles. J Mol Recogn 25:580–594

    Article  CAS  Google Scholar 

  42. Marqués AM, Pinazo A, Farfan M, Aranda FJ, Teruel JA, Ortiz A, Manresa A, Espuny MJ (2009) The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids 158(2):110–117

    Article  PubMed  Google Scholar 

  43. Park AJ, Cha DK, Holsen TM (1998) Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environ Res 70(3):351–355

    Article  CAS  Google Scholar 

  44. Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA (2010) Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol 30(2):127–144

    Article  CAS  PubMed  Google Scholar 

  45. Kurane R, Toeda K, Takeda K, Suzuki T (1986) Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric Biol Chem 50(9):2309–2313

    CAS  Google Scholar 

  46. Yin T, Qin M, Shen W (2014) Physicochemical investigations on the interactions between Gemini/single-chain cationic surfactants and bovine serum albumin. Colloids Surfaces A Physicochem Eng Asp 461(1):22–29

    Article  CAS  Google Scholar 

  47. Manabe M, Kawamura H, Kameyama K (2011) Premicelle formation of double-chain surfactants and bile salts in the neighborhood of the CMC region: application of a differential conductivity technique to the determination of micellization parameters. J Oleo Sci 60(10):515–525

    Article  CAS  PubMed  Google Scholar 

  48. Faustino C, Martins T, Duarte N, Ribeiro MH (2020) Self-assembly of lipoaminoacids-DNA based on thermodynamic and aggregation properties. J Surfactants Deterg 23(3):581–593. https://doi.org/10.1002/jsde.12391

    Article  CAS  Google Scholar 

  49. Kim JS, Powalla M, Lang S, Wagner F, Lünsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13(4):257–266

    Article  CAS  PubMed  Google Scholar 

  50. Ishigami Y, Suzuki S, Funada T, Masako Chino YU, TT, (1987) Surface-active properties of succinoyl trehalose lipids as microbial biosurfactants. J Japan Oil Chem Soc 36(11):847–851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Rosário Bronze for the HPLC-MS/MS support on the identification of the different compounds.

Funding

This research was funded by FCT—Foundation for Science and Technology, I.P., under the project UID/DTP/04138/2021 and UID/BIO/04565/2020 and for funding the project REDE/1518/REM/2005.

Author information

Authors and Affiliations

Authors

Contributions

MHR and CF conceived and designed research. SL, EF, JL and CF conducted experiments, MML contributed new microorganism and growth assays. SL, EF, JL, CF and MHR analyzed data. SL, EF, JL and CF and MHR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Maria H. L. Ribeiro.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

SL declares that she has no conflict of interest; EF declares that she has no conflict of interest; JL declares that he has no conflict of interest; MML declares that she has no conflict of interest; CF declares that she has no conflict of interest; MHR declares that she has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, S., Fahr, E., Costa, J. et al. Sustainable trehalose lipid production by Rhodotorula sp.: a promising bio-based alternative. Bioprocess Biosyst Eng 47, 145–157 (2024). https://doi.org/10.1007/s00449-023-02949-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02949-3

Keywords

Navigation