Skip to main content

Advertisement

Log in

Biofabrication of Mg-doped ZnO nanostructures for hemolysis and antibacterial properties

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this work was to synthesize 0.02 and 0.06 Mg-doped ZnO nanoparticles (NPs) using the aqueous extract of Plectranthus barbatus leaf. The structural integrity of the hexagonal phase was emphasized by X-ray diffraction analysis. The average crystallite size (D) of 0.02 and 0.06 Mg-doped ZnO NPs was found to be 23.83 and 26.95 nm, respectively. The scanning electron microscope images revealed a surface morphology of irregular nano-shapes of about 83 nm diameter with an elongated one-dimensional structure. The hemolysis activity demonstrated the safe nature of the synthesized materials at low doses. Antibacterial activity against S. aureus and E. coli, which assessed using the disc diffusion method, indicated that the prepared NPs could inhibit S. aureus but not E. coli. These findings suggest that the synthesized NPs could be explored for potential applications in biotechnology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Demissie MG, Sabir FK, Edossa GD, Gonfa BA (2020) Synthesis of zinc oxide nanoparticles using leaf extract of Lippia adoensis (Koseret) and evaluation of its antibacterial activity. J Chem 2020:1–9

    Google Scholar 

  2. Shabaani M, Rahaiee S, Zare M, Jafari SM (2020) Green synthesis of ZnO nanoparticles using loquat seed extract; Biological functions and photocatalytic degradation properties. Lwt 134(14):110133

    CAS  Google Scholar 

  3. Chen H, Qu Y, Sun L, Peng J, Ding J (2019) Band structures and optical properties of Ag and Al co-doped ZnO by experimental and theoretic calculation. Physica E 114:113602

    CAS  Google Scholar 

  4. Rohith NM, Kathirvel P, Saravanakumar S, Mohan L (2018) Influence of Ag doping on the structural, optical, morphological and conductivity characteristics of ZnO nanorods. Optik Int J Light Electron Opt 172:940–952

    Google Scholar 

  5. Alharthi MN, Ismail I, Bellucci S, Jaremko M, Abo-Aba SEM, Salam MA (2023) Biosynthesized zinc oxide nanoparticles using Ziziphus jujube plant extract assisted by ultrasonic irradiation and their biological applications. Separations 10:78

    CAS  Google Scholar 

  6. Suresh S et al (2022) Antibacterial activity and photocatalytic oxidative performance of zinc oxide nanorods biosynthesized using Aerva lanata leaf extract. Inorg Chem Commun 139:109398

    CAS  Google Scholar 

  7. Dobrucka R, Dugaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. J Biol Sci 23:517–523

    CAS  Google Scholar 

  8. Gawade VV, Gavade NL, Shinde HM, Babar SB, Kadam AN, Garadkar KM (2017) Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. Mater Sci Mater Electron 28:14033–14039

    CAS  Google Scholar 

  9. Rajeswari R, Pitchai T, Thangamuthu R, Sridhar S, Alagan V (2017) Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. Mater Sci Mater Electron 28(14):10374–10381

    Google Scholar 

  10. Ba-Abbad M, Takriff MS, Benamor A, Mahmoudi E, Mohammad AW (2017) Arabic gum as green agent for ZnO nanoparticles synthesis: properties, mechanism and antibacterial activity. Mater Sci Mater Electron 28(16):12100–12107

    CAS  Google Scholar 

  11. Rahman A, Harunsani MH, Tan AL, Khan MM (2021) Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 44:1333–1372

    PubMed  CAS  Google Scholar 

  12. Lin M-H et al (2021) Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohyd Polym 257:117639

    CAS  Google Scholar 

  13. Puspasari V, Ridhova A, Hermawan A, Amal MI, Khan MM (2022) ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng 45(9):1421–1445

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Ye L et al (2023) The CuO and AgO co-modified ZnO nanocomposites for promoting wound healing in Staphylococcus aureus infection. Mater Today Bio 18:100552

  15. Nadeem MS et al (2021) Hydrothermally derived co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Opt Mater 111:110606

    CAS  Google Scholar 

  16. Ahmad W, Kalra D (2020) Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J King Saud Univy-Sci 32(4):2358–2364

    Google Scholar 

  17. Nadeem MS, Munawar T, Mukhtar F, Rahman MNu, Riaz M, Iqbal F (2021) Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram Int 47(8):11109–11121

    CAS  Google Scholar 

  18. Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Poi YA, Ahmad N (2020) Antibacterial studies of ZnO and Cu-doped ZnO nanoparticles synthesized using aqueous leaf extractof Stachytarpheta jamaicensis. BioNanoScience 10(4):1037–1048

    Google Scholar 

  19. Slathia S, Gupta T, Chauhan RP (2021) Green synthesis of Ag–ZnO nanocomposite using Azadirachta indica leaf extract exhibiting excellent optical and electrical properties. Phys Condens Matter 621:413287

    CAS  Google Scholar 

  20. Badhusha MSM, Joel C, Khan RI, Vijayakumar N (2021) Green synthesis and characterization of Fe doped ZnO nanoparticles and their interaction with bovine serum albumin. J Indian Chem Soc 98:100197

    Google Scholar 

  21. Noukelag SK, Razanamahandry LC, Ntwampe SKO, Arendse CJ, Maaza M (2021) Industrial dye removal using bio-synthesized Ag-doped ZnO nanoparticles. Environ Nanotechnol Monit Manag 16:100463

    CAS  Google Scholar 

  22. Khan MM, Matussin SN, Rahman A (2022) Recent progress of phytogenic synthesis of ZnO, SnO2, and CeO2 nanomaterials. Bioprocess Biosyst Eng 45(4):619–645

    PubMed  CAS  Google Scholar 

  23. Saravanadevi K, Kavitha M, Karpagavinayagam P, Saminathan K, Vedhi C (2022) Biosynthesis of ZnO and Ag doped ZnO nanoparticles from Vitis vinifera leaf for antibacterial, photocatalytic application. Mater Today Proc 48:352–356

    CAS  Google Scholar 

  24. Rahman A, Harunsani MH, Tan AL, Ahmad N, Min B-K, Khan MM (2021) Influence of Mg and Cu dual-doping on phytogenic synthesized ZnO for light induced antibacterial and radical scavenging activities. Mater Sci Semicond Process 128:105761

    CAS  Google Scholar 

  25. Munawar T et al (2020) Zn0.9Ce0.05MO (M = Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceram Int 46(10):14369–14383

    CAS  Google Scholar 

  26. Sivaselvan S, Muthukumaran S (2016) Microstructure, tuning of band gap, enhanced green band emission and antibacterial studies of Cu, Cr dual doped ZnO nanoparticles by annealing temperature. J Inorganic Organomet Polym Mater 26(5):950–961

    CAS  Google Scholar 

  27. Arunpandian M et al (2021) Fabrication of Cu/ZnO system: A dual performer as photocatalyst and luminescent material. Inorg Chem Commun 134:109022

    CAS  Google Scholar 

  28. Chen H, Qu Y, Sun L, Peng J, Ding J (2019) Band structures and optical properties of Ag and Al co-doped ZnO by experimental and theoretic calculation. PhysE Low-Dimens Syst Nanostruct 114:113602

    CAS  Google Scholar 

  29. Geetha A, Sakthivel R, Mallika J (2017) Characterization of Mg DOPED ZnO nanoparticles synthesized by a novel green route using Azadirachta indica gum and its antibacterial activity. World J Pharm Pharm Sci 6(8):1189–1201

    CAS  Google Scholar 

  30. Rahman A, Harunsani MH, Tan AL, Ahmad N, Hojamberdiev M, Khan MM (2021) Effect of Mg doping ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess Biosyst Eng 44:875–889

    PubMed  CAS  Google Scholar 

  31. Almeida WAd et al (2021) Effects of Plectranthus barbatus leaf extract on survival, digestive proteases, midgut morphophysiology and gut microbiota homeostasis of Aedes aegypti larvae. S Afr J Bot 141:116–125

    Google Scholar 

  32. Cordeiro M et al (2021) Phytochemical characterization and biological activities of Plectranthus barbatus Andrews. Brazil J Biol 82:e236297

  33. Ezeonwumelu JO et al (2019) Phytochemical screening, toxicity, analgesic and anti-pyretic studies of aqueous leaf extract of Plectranthus barbatus [Andrews. Engl.] in rats. Pharmacol Pharm 10(4):205–221

    CAS  Google Scholar 

  34. Valdes L, Mislankar S, Paul A (1987) Coleus barbatus (C. forskohlii) (Lamiaceae) and the potential new drug forskolin (Coleonol). Econ Bot 41:474–483

    Google Scholar 

  35. Abdel-Mogib M, Albar H, Batterjee S (2002) Chemistry of the genus Plectranthus. Molecules 7(2):271–301

    PubMed Central  CAS  Google Scholar 

  36. Al-Hammadi A, Alnehia A, Al-Sharabi A, Al-Odayni A-B, Abdu NA, Saeed WS (2023) Plectranthus barbatus leaf extract-mediated synthesis of ZnS and Mg-doped ZnS NPs: structural, optical, morphological, and antibacterial studies. Nanomater Nanotechnol 2023:1399904

  37. Saif MMS, Alodeni RM, Alghamdi AA, Al-Odayni A-B (2022) Synthesis, spectroscopic characterization, thermal analysis and in vitro bioactivity studies of the N-(cinnamylidene) tryptophan Schiff base. J King Saud Univ-Sci 34(4):101988

    Google Scholar 

  38. Alnehia A et al (2023) Garlic extract-mediated synthesis of ZnS nanoparticles: structural, optical, antibacterial, and hemolysis studies. J Nanomater 2023:8200912

  39. Alnehia A, Al-Sharabi A, Al-Hammadi AH, Al-Odayni A-B, Alramadhan SA, Alodeni RM (2023) Phyto-mediated synthesis of silver-doped zinc oxide nanoparticles from Plectranthus barbatus leaf extract: optical, morphological, and antibacterial properties. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03907-5

  40. Al-Sharabi A, Alnehia A, Al-Hammadi AH, Alhumaidha KA, AL-Osta A (2022) The effect of Nigella sativa seed extract concentration on crystal structure, band gap and antibacterial activity of ZnS-NPs prepared by green route. J Mater Sci Mater Electron 33:20812–20822

    CAS  Google Scholar 

  41. Alnahari H, Al-Hammadi AH, Al-Sharabi A, Alnehia A, Al-Odayni A-B (2023) Structural, morphological, optical, and antibacterial properties of CuO–Fe2O3–MgO–CuFe2O4nanocomposite synthesized via auto-combustion route. J Mater Sci Mater Electron 34:682

    CAS  Google Scholar 

  42. Kumar KC, Rao NM, Kaleemulla S, Rao GV (2017) Structural, optical and magnetic properties of Sn Doped ZnS nano powders prepared by solid state. Phys Condens Matter 522:75–80

    CAS  Google Scholar 

  43. Saleem S et al (2022) Modification in structural, optical, morphological, and electrical properties of zinc oxide (ZnO) nanoparticles (NPs) by metal (Ni, Co) dopants for electronic device applications. Arab J Chem 15(1):103518

    CAS  Google Scholar 

  44. Rafique S, Kasi AK, Kasi JK, Aminullah MB, Shakoor Z (2020) Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomater Nanotechnol 10:1847980419895741

    CAS  Google Scholar 

  45. Ramesan M, Greeshma K, Parvathi K, Anilkumar T (2020) Structural, electrical, thermal, and gas sensing properties of new conductive blend nanocomposites based on polypyrrole/phenothiazine/silver-doped zinc oxide. J Vinyl Add Tech 26(2):187–195

    CAS  Google Scholar 

  46. Tayel AA et al (2011) Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf 31(2):211–218

    CAS  Google Scholar 

  47. Lallo da Silva B et al (2019) Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int J Nanomed 14:9395–9410

  48. Alnehia A, Al-Odayni A-B, Al-Sharabi A, Al-Hammadi AH, Saeed WS (2022) Pomegranate peel extract–mediated green synthesis of ZnO-NPs: extract concentration-dependent structure, optical, and antibacterial activity. J Chem 2022:9647793

  49. Wali Muhammad NU, Haroon M, Abbasi BH (2019) Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv 9:29541–29548

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-1909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Alnehia.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Odayni, AB., Alnehia, A., Al-Sharabi, A. et al. Biofabrication of Mg-doped ZnO nanostructures for hemolysis and antibacterial properties. Bioprocess Biosyst Eng 46, 1817–1824 (2023). https://doi.org/10.1007/s00449-023-02937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02937-7

Keywords

Navigation