Skip to main content
Log in

Large-scale crystallization as an intermediate processing step in insulin downstream process: explored advantages and identified tool for process intensification

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IP :

Insulin precursor

IME :

Insulin methyl ester

HCP :

Host cells proteins

HC-DNA :

Host cell DNA

RT :

Retention time

References

  1. Picanço-Castro V, Biaggio RT, Cova DT, Swiech K (2013) Production of recombinant therapeutic proteins in human cells: current achievements and future perspectives. Protein Pept Lett 20:1373–1381. https://doi.org/10.2174/092986652012131112130322

    Article  PubMed  CAS  Google Scholar 

  2. Müller D, Klein L, Lemke J, Schulze M, Kruse T, Saballus M, Matuszczyk J, Kampmann M, Zijlstra G (2022) Process intensification in the biopharma industry: improving efficiency of protein manufacturing processes from development to production scale using synergistic approaches. Chem Eng Process 171:108727. https://doi.org/10.1016/j.cep.2021.108727

    Article  CAS  Google Scholar 

  3. Wohlgemuth R (2009) The locks and keys to industrial biotechnology. New Biotechnol 25:204–213. https://doi.org/10.1016/j.nbt.2009.01.002

    Article  CAS  Google Scholar 

  4. Santos RD, Carvalho AL, Cecília A, Roque A (2017) Renaissance of protein crystallization and precipitation in biopharmaceuticals purification. Biotechnol Adv 35:41–50. https://doi.org/10.1016/j.biotechadv.2016.11.005

    Article  PubMed  CAS  Google Scholar 

  5. Broly H, Mitchell-Logean C, Costioli MD, Guillemot-Potelle C (2010) Cost of goods modeling and quality by design for developing cost-effective processes. BioPharm Int 23:26–35

    Google Scholar 

  6. Lutze P, Gani R, Woodley JM (2010) Process intensification: a perspective on process synthesis. Chem Eng Process 49:547–558. https://doi.org/10.1016/j.cep.2010.05.002

    Article  CAS  Google Scholar 

  7. Judge RA, Johns MR, White ET (1995) Protein purification by bulk crystallization: the recovery of ovalbumin. Biotechnol Bioeng 48:316–323. https://doi.org/10.1002/bit.260480404

    Article  PubMed  CAS  Google Scholar 

  8. Jacobsen C, Garside J, Hoare M (1998) Nucleation and growth of microbial lipase crystals from clarified concentrated fermentation broths. Biotechnol Bioeng 57:666–675. https://doi.org/10.1002/(sici)1097-0290(19980320)57:6%3c666::aid-bit4%3e3.0.co;2-j

    Article  PubMed  CAS  Google Scholar 

  9. Smejkal B, Agrawal N, Helk B, Schulz H, Giffard M, Mechelke M, Ortner F, Heckmeier P, Trout B, Hekmat D (2013) Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol Bioeng 110:2452–2461. https://doi.org/10.1002/bit.24908

    Article  PubMed  CAS  Google Scholar 

  10. Giese G, Myrold A, Gorrell J, Persson J (2013) Purification of antibodies by precipitating impurities using Polyethylene Glycol to enable a two chromatography step process. J Chromatogr B 938:14–21. https://doi.org/10.1016/j.jchromb.2013.08.029

    Article  CAS  Google Scholar 

  11. Oelmeier SA, Ladd-Effio C, Hubbuch J (2013) Alternative separation steps for monoclonal antibody purification: combination of centrifugal partitioning chromatography and precipitation. J Chromatogr A 1319:118–126. https://doi.org/10.1016/j.chroma.2013.10.043

    Article  PubMed  CAS  Google Scholar 

  12. Martinez M, Spitali M, Norrant EL, Bracewell DG (2019) Precipitation as an enabling technology for the intensification of biopharmaceutical manufacture. Trends Biotechnol 37(3):237–241. https://doi.org/10.1016/j.tibtech.2018.09.001

    Article  PubMed  CAS  Google Scholar 

  13. Liu Y, Hou H, Li J, Cheng Q-D, Zhang X, Zeng X-B, Fiaz A, Wang B, Zhang C-Y, Lu Q-Q, Yin D-C (2020) Direct crystallization of proteins from impure sources. Cryst Growth Des 20(3):1694–1705. https://doi.org/10.1021/acs.cgd.9b01446

    Article  CAS  Google Scholar 

  14. Scott DA, Fisher AM (1935) Crystalline insulin. Biochem J 29:1048. https://doi.org/10.1042/bj0291048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Romans RG (1954) The preparation and chemistry of crystalline insulin. Recent Prog Horm Res 10:241. https://doi.org/10.1021/ie50367a010

    Article  CAS  Google Scholar 

  16. Petersen K, Schlichtkrull J (1964) Novo Terapeutisk Laboratorium A/S. Insulin crystals and preparations and processes for producing them. US Patent 692612

  17. Mirsky IA, Jinks R, Perisutti G (1963) The isolation and crystallization of human insulin. J Clin Investig 42(12):1869–1872. https://doi.org/10.1172/JCI104871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hazra P, Sreenivas S, Venkatesan K, Patale MB, Chatterjee A, Ramprabu N, Shaikh AM, Kusumanch M (2021) A novel peptide design aids in the expression and its simplified process of manufacturing of Insulin Glargine in Pichia pastoris. Appl Microbiol Biotechnol 105:3061–3074. https://doi.org/10.1007/s00253-021-11224-y

    Article  PubMed  CAS  Google Scholar 

  19. Hazra P, Adhikary L, Chatterjee A, Shabandri Q, Adhikary L, Dave N, Buddha M (2012) A novel one-pot de-blocking and conjugation reaction step leads to process intensification in the manufacture of PEGylated insulin IN-105. Bioprocess Biosyst Eng 35(8):1333–2134. https://doi.org/10.1007/s00449-012-0722-4

    Article  PubMed  CAS  Google Scholar 

  20. Zang Y, Kammerer B, Eisenkolb M, Lohr K, Kiefer H (2011) Towards protein crystallization as a process step in downstream processing of therapeutic antibodies: screening and optimization at microbatch scale. PLoS ONE. https://doi.org/10.1371/journal.pone.0025282

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brange J (1994) Stability of insulin: studies on the physical and chemical stability of insulin in pharmaceutical formulation. Kluwer Academic, Boston

    Google Scholar 

  22. Redwan ER, Matar SM, El-Aziz GA, Serour EA (2007) Synthesis of the human insulin gene: protein expression, scaling up and bioactivity. Prep Biochem Biotechnol 38(1):24–39. https://doi.org/10.1080/10826060701774312

    Article  CAS  Google Scholar 

  23. Nanev N (2020) Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization. Prog Cryst Growth Charact Mater 66(2):100484. https://doi.org/10.1016/j.pcrysgrow.2020.100484

    Article  CAS  Google Scholar 

  24. Gagnon P (2012) Technology trends in antibody purification. J Chromatogr A 1221:57–70. https://doi.org/10.1016/j.chroma.2011.10.034

    Article  PubMed  CAS  Google Scholar 

  25. Bromberg L, Rashba-Step J, Scott T (2005) Insulin particle formation in supersaturated aqueous solutions of poly (ethylene glycol). Biophys J 89(5):3424–3433. https://doi.org/10.1529/biophysj.105.062802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hazra P, Adhikary L, Dave N, Khedkar A, Manjunath HS, Anantharaman R, Iyer H (2010) Development of a process to manufacture PEGylated orally bioavailable insulin. Biotechnol Prog 26(6):1695–1704. https://doi.org/10.1002/btpr.487

    Article  PubMed  CAS  Google Scholar 

  27. Polez S, Origi D, Zahariev S, Guarnaccia C, Tisminetzky SG, Skoko N, Baralle M (2016) Simplified and efficient process for insulin production in Pichia pastoris. PLoS ONE 11(12):e0167207. https://doi.org/10.1371/journal.pone.0167207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Buddha M, Hazra P, Goudar DC, Dinesh G, Sathyanarayan S (2016) EP 3 087 192 B1

  29. Shukla V, Srivatsa K, Madhu Kumar MS, Vajpai N, Agarwal N, Nethra S, Somesh BP, Kulashrestha A, Hazra P (2021) Large scale purification and characterization of A21 deamidated variant-most prominent post translational modification (PTM) for insulins which is also widely observed in insulins pharmaceutical manufacturing and storage. Protein Express Purif 185:105895. https://doi.org/10.1016/j.pep.2021.105895

    Article  CAS  Google Scholar 

  30. Zhu-Shimoni J, Yu C, Nishihara J, Wong RM, Gunawan F, Lin M, Krawitz D, Liu P, Sandoval W, Vanderlaan M (2014) Host cell protein testing by ELISAs and the use of orthogonal methods. Biotechnol Bioeng 111(12):2367–2379. https://doi.org/10.1002/bit.25327. (PMID: 24995961)

    Article  PubMed  CAS  Google Scholar 

  31. Peper G, Fankhauser A, Merlin T, Roscic A, Hofmann M, Obrdlik P (2014) Direct real-time quantitative PCR for measurement of host-cell residual DNA in therapeutic proteins. J Pharm Biomed Anal 100:123–130. https://doi.org/10.1016/j.jpba.2014.07.032

    Article  PubMed  CAS  Google Scholar 

  32. Schägger H, Jagow HV (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379. https://doi.org/10.1016/0003-2697(87)90587-2

    Article  PubMed  Google Scholar 

  33. Siew YY, Zhang W (2021) Downstream processing of recombinant human insulin and its analogues production from E. coli inclusion bodies. Bioresour Bioprocess 8:65. https://doi.org/10.1186/s40643-021-00419-w

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gurramkonda C, Polez S, Skoko N, Adnan A, Gäbel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U (2010) Research application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microbial Cell Factories 9:31

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morihara K, Ueno Y, Sakina K (1986) Influence of temperature on the enzymic semisynthesis of human insulin by coupling and transpeptidation method. Biochem J 240:803–810. https://doi.org/10.1042/bj2400803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hao J, Xu L, He H, Du X, Jia L (2013) High-level expression of Staphylococcal Protein A in Pichia pastoris and purification and characterization of the recombinant protein. Protein Express Purif 90(2):178–185. https://doi.org/10.1016/j.pep.2013.06.005

    Article  CAS  Google Scholar 

  37. Jozala AF, Geraldes DC, Tundisi LL, Feitosa VA, Breyer CA, Cardoso SL (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 47(Suppl. 1):51–63. https://doi.org/10.1016/j.bjm.2016.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Azadi S, Sadjady SK, Naghdi SAMN, Mahboubi A, Solaimanian R (2018) Bioprocess and downstream optimization of recombinant human growth hormone in Pichia pastoris. Res Pharm Sci 13(3):222–238. https://doi.org/10.4103/1735-5362.228953

    Article  PubMed  PubMed Central  Google Scholar 

  39. USP 39 Published General Chapter <1132> Residual host cell protein measurement in biopharmaceuticals

  40. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies: application of platform approaches. J Chromatogr B 84:28–39. https://doi.org/10.1016/j.jchromb.2006.09.026

    Article  CAS  Google Scholar 

  41. Hogwood CE, Bracewell DG, Smales MC (2014) Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses. Curr Opin Biotechnol 30:153–160. https://doi.org/10.1016/j.copbio.2014.06.017

    Article  PubMed  CAS  Google Scholar 

  42. Mollerup JM, Frederiksen SS (2016) Purification of insulin. United States patent US 9,447,163, 20 Sep 2016

  43. Yanga O, Qadanb M, Ierapetritou M (2019) Economic analysis of batch and continuous biopharmaceutical antibody production: a review. J Pharm Innov 14:1–19. https://doi.org/10.1007/s12247-018-09370-4

    Article  Google Scholar 

  44. Li YF, Venkatasubramanian V (2016) Integrating design of experiments and principal component analysis to reduce downstream cost of goods in monoclonal antibody production. J Pharm Innov 11(4):352–361. https://doi.org/10.1007/s12247-016-9263-8

    Article  Google Scholar 

  45. Xenopoulos A (2015) A new, integrated, continuous purification process template for monoclonal antibodies: process modeling and cost of goods studies. J Biotechnol 213:42–53. https://doi.org/10.1016/j.jbiotec.2015.04.020

    Article  PubMed  CAS  Google Scholar 

  46. Franzreb M, Müller E, Vajda J (2014) Cost estimation for protein A chromatography. Bioprocess Technol 12:44–52

    Google Scholar 

Download references

Acknowledgements

We thank the process and characterization groups of Research and Development (RND) of Biocon Biologics for their technical support and suggestions.

Data availability

Data and information can be available, if needed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Hazra.

Ethics declarations

Conflict of interest

The information and data provided in the manuscript is completely outcome of development exercise from the team. There is no competing interest in the information provided.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, P., Buddha, M., Reddy, C. et al. Large-scale crystallization as an intermediate processing step in insulin downstream process: explored advantages and identified tool for process intensification. Bioprocess Biosyst Eng 46, 1765–1776 (2023). https://doi.org/10.1007/s00449-023-02931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02931-z

Keywords

Navigation