Skip to main content
Log in

Development of a magnetically stabilized fluidized bed bioreactor for enzymatic synthesis of 2-ethylhexyl oleate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to develop and investigate the synthesis of 2-ethylhexyl oleate catalyzed by Candida antarctica lipase immobilized on magnetic poly(styrene-co-divinylbenzene) (STY–DVB-M) particles in a magnetically stabilized fluidized bed reactor (MSFBR) operated in continuous mode. The physical properties of the copolymer were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The glass transition temperature was 85.68 °C, and the onset of thermal degradation occurred at 406.66 °C. Syntheses were performed at 50 °C using a space time of 12 h and a bed porosity of 0.892. Assays were conducted to assess the influence of magnetic field intensity (5 to 15 mT) on reaction yield, ester concentration, and productivity. The highest productivity was 0.850 ± 0.023 mmol g−1 h−1, obtained with a magnetic field intensity of 15 mT. An operational stability test was performed under these conditions, revealing a biocatalyst half-life of 2148 h (179 operation cycles) and a thermal deactivation constant of 3.23 × 10−4 h−1 (R2 = 0.9446). Computational simulations and mathematical modeling were performed using Scilab based on ping-pong bi–bi kinetics and molar balances of reaction species. The model provided consistent results of interstitial velocity and good prediction of reaction yields, with R2 = 0.926. These findings demonstrate that the studied technique can provide improvements in biocatalytic processes, representing a promising strategy for the enzymatic synthesis of 2-ethylhexyl oleate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({A}_{\mathrm{P}}\) :

Sum of the outer areas of particles (m2)

C Ac0 :

Initial acid concentration (mol L1)

C Acs :

Acid concentration (mol L1)

C Al0 :

Initial alcohol concentration (mol L1)

C Als :

Alcohol concentration (mol L1)

\({C}_{\mathrm{j}}\) :

Concentration of species j within particles (kmol m−3)

\({C}_{\mathrm{js}}\) :

Concentration of species j in solution (kmol m−3)

\({C}_{\mathrm{jsp}}\) :

Concentration of species j within particles, near the particle surface (kmol m−3)

\({C}_{\mathrm{jss}}\) :

Concentration of species j in solution, near the particle surface (kmol m−3)

C Ess :

Ester concentration (mol L1)

C Ws :

Water concentration (mol L1)

\({\text{f}}_{\text{CD}}\) :

Correlation factor between mass transfer coefficients

\({K}_{\mathrm{eq}}\) :

Esterification equilibrium constant

\({K}_{\mathrm{ij}}\) :

Inhibition constant for species j

\({k}_{\mathrm{jcp}}\) :

Coefficient of mass transfer within particles (m min−1)

\({k}_{\mathrm{jcs}}\) :

Coefficient of mass transfer in solution (m min−1)

\({K}_{\mathrm{mj}}\) :

Michaelis–Menten constant for species j

\({K}_{\mathrm{Pj}}\) :

Partition coefficient

r :

Reaction rate (mol L1 s1)

\({V}_{\mathrm{max}}^{f}\) :

Maximum rate of the forward reaction

\({V}_{\mathrm{max}}^{r}\) :

Maximum rate of the reverse reaction

\({V}_{\mathrm{P}}\) :

Sum of particle volumes in the fluidized bed (m3)

X :

Reagent conversion

\(\theta\) :

Ratio of \({C}_{\mathrm{Al}0}\) to \({C}_{\mathrm{Ac}0}\)

α :

Empirical factor (min mL−1)

References

  1. Munkajohnpong P, Kesornpun C, Buttranon S et al (2020) Fatty alcohol production: an opportunity of bioprocess: Bioprocesses for the production of fatty alcohols. Biofuel Bioprod Biorefin 14:986–1009. https://doi.org/10.1002/bbb.2112

    Article  CAS  Google Scholar 

  2. Usmani Z, Sharma M, Awasthi AK et al (2021) Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour Technol 322:124548. https://doi.org/10.1016/j.biortech.2020.124548

    Article  CAS  PubMed  Google Scholar 

  3. Wu S, Snajdrova R, Moore JC et al (2021) Biocatalysis: Enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl 60:88–119. https://doi.org/10.1002/anie.202006648

    Article  CAS  PubMed  Google Scholar 

  4. Basso A, Serban S (2019) Industrial applications of immobilized enzymes—a review. Mol Catal 479:110607. https://doi.org/10.1016/j.mcat.2019.110607

    Article  CAS  Google Scholar 

  5. Chen K, Arnold FH (2020) Engineering new catalytic activities in enzymes. Nat Catal 3:203–213. https://doi.org/10.1038/s41929-019-0385-5

    Article  CAS  Google Scholar 

  6. Kovalenko GA, Perminova LV, Beklemishev AB (2019) Catalytic properties of recombinant Thermomyces lanuginosus lipase immobilized by impregnation into mesoporous silica in the enzymatic esterification of saturated fatty acids with aliphatic alcohols. React Kinet Mech Catal 128:479–491. https://doi.org/10.1007/s11144-019-01648-z

    Article  CAS  Google Scholar 

  7. Ariaeenejad S, Hosseini E, Motamedi E et al (2019) Application of carboxymethyl cellulose-g-poly(acrylic acid-co-acrylamide) hydrogel sponges for improvement of efficiency, reusability and thermal stability of a recombinant xylanase. Chem Eng J 375:122022. https://doi.org/10.1016/j.cej.2019.122022

    Article  CAS  Google Scholar 

  8. Zdarta J, Meyer A, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92. https://doi.org/10.3390/catal8020092

    Article  CAS  Google Scholar 

  9. Thangaraj B, Solomon PR (2019) Immobilization of lipases—a review Part II: carrier materials. ChemBioEng Rev 6:167–194. https://doi.org/10.1002/cben.201900017

    Article  CAS  Google Scholar 

  10. Martínez SAH, Melchor-Martínez EM, Hernández JAR et al (2022) Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. Fuel (Lond) 312:122927. https://doi.org/10.1016/j.fuel.2021.122927

    Article  CAS  Google Scholar 

  11. Tang W, Ma T, Zhou L et al (2019) Polyamine-induced tannic acid co-deposition on magnetic nanoparticles for enzyme immobilization and efficient biodiesel production catalysed by an immobilized enzyme under an alternating magnetic field. Catal Sci Technol 9:6015–6026. https://doi.org/10.1039/c9cy01350d

    Article  CAS  Google Scholar 

  12. Sher H, Ali H, Rashid MH et al (2019) Enzyme immobilization on metal-organic framework (MOF): effects on thermostability and function. Protein Pept Lett 26:636–647. https://doi.org/10.2174/0929866526666190430120046

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Bilal M, Zdarta J et al (2021) Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res Int 140:109979. https://doi.org/10.1016/j.foodres.2020.109979

    Article  CAS  PubMed  Google Scholar 

  14. Rosa CMR, Silva MVC, Aguiar LG et al (2020) Prediction and comparison of textural properties of magnetic copolymer supports for enzyme immobilization. J Appl Polym Sci 137:49258. https://doi.org/10.1002/app.49258

    Article  CAS  Google Scholar 

  15. da Silva MVC, Rangel ABS, Aguiar LG et al (2020) Continuous enzymatic synthesis of 2-ethylhexyl oleate in a fluidized bed reactor: Operating conditions, hydrodynamics, and mathematical modeling. Ind Eng Chem Res 59:19522–19530. https://doi.org/10.1021/acs.iecr.0c03504

    Article  CAS  Google Scholar 

  16. Remonatto D, Miotti RH Jr, Monti R et al (2022) Applications of immobilized lipases in enzymatic reactors: a review. Process Biochem 114:1–20. https://doi.org/10.1016/j.procbio.2022.01.004

    Article  CAS  Google Scholar 

  17. Wu K-J, Chang C-F, Chang J-S (2007) Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochem 42:1165–1171. https://doi.org/10.1016/j.procbio.2007.05.012

    Article  CAS  Google Scholar 

  18. Mita L, Grumiro L, Rossi S et al (2015) Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor. J Hazard Mater 291:129–135. https://doi.org/10.1016/j.jhazmat.2015.02.072

    Article  CAS  PubMed  Google Scholar 

  19. Özkaya B, Kaksonen AH, Sahinkaya E, Puhakka JA (2019) Fluidized bed bioreactor for multiple environmental engineering solutions. Water Res 150:452–465. https://doi.org/10.1016/j.watres.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  20. Da Silva MVC, Souza AB, de Castro HF et al (2020) Synthesis of 2-ethylhexyl oleate catalyzed by Candida antarctica lipase immobilized on a magnetic polymer support in continuous flow. Bioprocess Biosyst Eng 43:615–623. https://doi.org/10.1007/s00449-019-02257-9

    Article  CAS  PubMed  Google Scholar 

  21. Queiroz SS, Jofre FM, Mussatto SI (2022) Scaling up xylitol bioproduction: challenges to achieve a profitable bioprocess. Renew Sustain Energy Rev 154:111789. https://doi.org/10.1016/j.rser.2021.111789

    Article  CAS  Google Scholar 

  22. Boodhoo KVK, Flickinger MC, Woodley JM, Emanuelsson EAC (2022) Bioprocess intensification: a route to efficient and sustainable biocatalytic transformations for the future. Chem Eng Process 172:108793. https://doi.org/10.1016/j.cep.2022.108793

    Article  CAS  Google Scholar 

  23. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

    Article  CAS  Google Scholar 

  24. Kuo C-H, Huang C-Y, Shieh C-J, Dong C-D (2022) Enzymes and biocatalysis. Catalysts 12:993. https://doi.org/10.3390/catal12090993

    Article  CAS  Google Scholar 

  25. Johannsen J, Meyer F, Engelmann C et al (2021) Multi-enzyme cascade reaction in a miniplant two-phase-system: model validation and mathematical optimization. AIChE J. https://doi.org/10.1002/aic.17158

    Article  Google Scholar 

  26. Sokač Cvetnić T, Šalić A, Benković M et al (2023) A systematic review of enzymatic kinetics in microreactors. Catalysts 13:708. https://doi.org/10.3390/catal13040708

    Article  CAS  Google Scholar 

  27. Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS (2021) Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catal Sci Technol 11:5696–5711. https://doi.org/10.1039/d1cy00696g

    Article  CAS  Google Scholar 

  28. He X-L, Chen B-Q, Tan T-W (2002) Enzymatic synthesis of 2-ethylhexyl esters of fatty acids by immobilized lipase from Candida sp. 99–125. J Mol Catal B Enzym 18:333–339. https://doi.org/10.1016/s1381-1177(02)00114-5

    Article  CAS  Google Scholar 

  29. Raut RK, Shaikh M, Darbha S (2014) Synthesis of fatty monoester lubricant base oil catalyzed by Fe-Zn double-metal cyanide complex. J Chem Sci (Bangalore) 126:997–1003. https://doi.org/10.1007/s12039-014-0669-x

    Article  CAS  Google Scholar 

  30. Tang SW, Chan C-H, Mohd NK et al (2022) Synthesis and physicochemical properties of low viscosity 2-ethylhexyl alkyl ethers made from palm-based esters as potential biolubricant. Eur J Lipid Sci Technol 124:2100072. https://doi.org/10.1002/ejlt.202100072

    Article  CAS  Google Scholar 

  31. Zhang W, Wu J, Yu S et al (2020) Modification and synthesis of low pour point plant-based lubricants with ionic liquid catalysis. Renew Energy 153:1320–1329. https://doi.org/10.1016/j.renene.2020.02.067

    Article  CAS  Google Scholar 

  32. Pauzi NNPN, Ramli NAS, Chung-Hung C et al (2022) Non-catalytic esterification of palm fatty acid distillate with 2-ethyl hexanol for high purity production of biolubricant ester. Biofuel Bioprod Biorefin 16:1583–1598. https://doi.org/10.1002/bbb.2390

    Article  CAS  Google Scholar 

  33. Ho CK, McAuley KB, Peppley BA (2019) Biolubricants through renewable hydrocarbons: a perspective for new opportunities. Renew Sustain Energy Rev 113:109261. https://doi.org/10.1016/j.rser.2019.109261

    Article  CAS  Google Scholar 

  34. Silva MVC, Aguiar LG, de Castro HF, Freitas L (2018) Optimization of the parameters that affect the synthesis of magnetic copolymer styrene-divinilbezene to be used as efficient matrix for immobilizing lipases. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-018-2553-1

    Article  PubMed  Google Scholar 

  35. Da Silva MVC, Rangel ABS, Dutra FP et al (2021) Kinetic and thermodynamic study of 2-ethylhexyl oleate synthesis catalyzed by candida antarctica lipase immobilized on a magnetic hybrid support. Catal Lett 151:1239–1247. https://doi.org/10.1007/s10562-020-03391-w

    Article  CAS  Google Scholar 

  36. de Lima R, Bento HBS, Reis CER et al (2022) Biolubricant production from stearic acid and residual secondary alcohols: system and reaction design for lipase-catalyzed batch and continuous processes. Catal Lett 152(2):547–558. https://doi.org/10.1007/s10562-021-03663-z

    Article  CAS  Google Scholar 

  37. Santos JC, Paula AV, Nunes GFM et al (2008) Pseudomonas fluorescens lipase immobilization on polysiloxane–polyvinyl alcohol composite chemically modified with epichlorohydrin. J Mol Catal B Enzym 52:49–57. https://doi.org/10.1016/j.molcatb.2007.11.005

    Article  CAS  Google Scholar 

  38. Predoi G, Ciobanu CS, Iconaru SL et al (2021) Preparation and characterization of dextran coated iron oxide nanoparticles thin layers. Polymers (Basel) 13:2351. https://doi.org/10.3390/polym13142351

    Article  CAS  PubMed  Google Scholar 

  39. Panigrahi R, Srivastava SK (2015) Trapping of microwave radiation in hollow polypyrrole microsphere through enhanced internal reflection: a novel approach. Sci Rep 5:7638. https://doi.org/10.1038/srep07638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lav T-X, Grande D, Gaillet C et al (2012) Porous poly(styrene-co -divinylbenzene) neutral monolith: From design and characterization to reversed-phase capillary electrochromatography applications. Macromol Chem Phys 213:64–71. https://doi.org/10.1002/macp.201100430

    Article  CAS  Google Scholar 

  41. Gong Y, Chen Z, Bi L et al (2021) Adsorption property and mechanism of polyacrylate-divinylbenzene microspheres for removal of trace organic micropollutants from water. Sci Total Environ 781:146635. https://doi.org/10.1016/j.scitotenv.2021.146635

    Article  CAS  PubMed  Google Scholar 

  42. Liu X, Zhang Y, Ju H et al (2021) Uptake of methylene blue on divinylbenzene cross-linked chitosan/maleic anhydride polymer by adsorption process. Colloids Surf A Physicochem Eng Asp 629:127424. https://doi.org/10.1016/j.colsurfa.2021.127424

    Article  CAS  Google Scholar 

  43. Bento HBS, De Castro HF, De Oliveira PC et al (2017) Magnetized poly (STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation. J Magn Magn Mater 426:95–101. https://doi.org/10.1016/j.jmmm.2016.11.061

    Article  CAS  Google Scholar 

  44. M’Bareck CO, Nguyen QT, Metayer M et al (2004) Poly (acrylic acid) and poly (sodium styrenesulfonate) compatibility by Fourier transform infrared and differential scanning calorimetry. Polymer (Guildf) 45:4181–4187. https://doi.org/10.1016/j.polymer.2004.03.044

    Article  CAS  Google Scholar 

  45. Kim J, Gal CW, Choi Y-J et al (2023) Effect of non-reactive diluent on defect-free debinding process of 3D printed ceramics. Addit Manuf 67:103475. https://doi.org/10.1016/j.addma.2023.103475

    Article  CAS  Google Scholar 

  46. Zhu X, Han Y, Sun Y et al (2022) Magnetite oxidation mechanism of the air-cooling stage for limonite ore magnetization roasting. Miner Eng 186:107720. https://doi.org/10.1016/j.mineng.2022.107720

    Article  CAS  Google Scholar 

  47. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39–59. https://doi.org/10.4103/0975-7406.76463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Theodoro TR (2018) Modificação química de resinas à base de estireno através do processo de sulfonação: estudo experimental e modelagem matemática. Lorena School of Engineering - University of São Paulo

  49. Shim SE, Yang S, Choi HH, Choe S (2004) Fully crosslinked poly (styrene-co-divinylbenzene) microspheres by precipitation polymerization and their superior thermal properties. J Polym Sci A Polym Chem 42:835–845. https://doi.org/10.1002/pola.11028

    Article  CAS  Google Scholar 

  50. Oppenheim BW (2006) Impact of productivity on energy conservation. Strateg Plan Energy Environ 26:48–65. https://doi.org/10.1080/10485230609509716

    Article  Google Scholar 

  51. Graham LJ, Atwater JE, Jovanovic GN (2006) Chlorophenol dehalogenation in a magnetically stabilized fluidized bed reactor. AIChE J 52:1083–1093. https://doi.org/10.1002/aic.10681

    Article  CAS  Google Scholar 

  52. Cubides-Roman DC, Pérez VH, de Castro HF et al (2017) Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel (Lond) 196:481–487. https://doi.org/10.1016/j.fuel.2017.02.014

    Article  CAS  Google Scholar 

  53. Kuhn D, Blank LM, Schmid A, Bühler B (2010) Systems biotechnology—Rational whole-cell biocatalyst and bioprocess design. Eng Life Sci 10:384–397. https://doi.org/10.1002/elsc.201000009

    Article  CAS  Google Scholar 

  54. Khan Z, Javed F, Shamair Z et al (2021) Current developments in esterification reaction: a review on process and parameters. J Ind Eng Chem 103:80–101. https://doi.org/10.1016/j.jiec.2021.07.018

    Article  CAS  Google Scholar 

  55. Espin MJ, Quintanilla MAS, Valverde JM (2017) Magnetic stabilization of fluidized beds: Effect of magnetic field orientation. Chem Eng J 313:1335–1345. https://doi.org/10.1016/j.cej.2016.11.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and was supported by the São Paulo Research Foundation—Brazil (FAPESP) (grants numbers 2016/17833-3 and 2016/10636-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa de Freitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.V.C., Rangel, A.B.S., Rosa, C.M.R. et al. Development of a magnetically stabilized fluidized bed bioreactor for enzymatic synthesis of 2-ethylhexyl oleate. Bioprocess Biosyst Eng 46, 1665–1676 (2023). https://doi.org/10.1007/s00449-023-02928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02928-8

Keywords

Navigation