Skip to main content

Advertisement

Log in

Investigation of in vitro antimicrobial, antioxidant and antiproliferative activities of Nostoc calcicola biosynthesized gold nanoparticles

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The cyanobacteria are the promising candidate for synthesizing gold nanoparticles (AuNPs), due to their ability to accumulate heavy metals from the cellular environment and additionally contain varied bioactive compounds as reducing and stabilizing agents. This study describes the N2-fixing cyanobacterium Nostoc calcicola-mediated bioreduction of AuNPs and the inherent antimicrobial, antioxidant, and antiproliferative activities in vitro. Biosynthesized Nc-AuNPs were characterized by spectral characterization techniques. The formation of AuNPs was physically confirmed by the colour change from pale green to dark violet. The UV–Vis analysis, further, proved the reduction in Nc-AuNPs with the cyanobacterium and showed a spectral peak at 527 nm. FESEM-EDX images suggested the surface morphology of the NPs as spherical, cuboidal, and size between 20 and 140 nm. The antimicrobial studies of Nc-AuNPs were carried out by agar-well diffusion method and MIC values against five pathogenic bacterial and two fungal strains were noted. The AuNPs exhibited potential antimicrobial activity against h-pathogenic bacteria with inhibitory zones ranging at 11–18 mm; against fungi ranging at 13–17 mm. Significant antioxidant potentialities were explored by a DPPH assay with an IC50 value of 55.97 μg/ mL. Furthermore, in the anticancer efficacy assay, the Nc-AuNPs inhibited cellular proliferation in human breast adenocarcinoma and cervical cancer cell lines at IC50 concentration, 37.3 μg/ml, and 44.5 μg/ml, respectively. Conclusively, N. calcicola would be an excellent source for synthesizing stable colloidal AuNPs that had significant credibility as phycological (algal) nanomedicines as novel prodrugs with multiple bioactivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marchal C, Behr M, Vigneron F et al (2016) Au/TiO 2 photocatalysts prepared by solid grinding for artificial solar-light water splitting. New J Chem 40:4428–4435. https://doi.org/10.1039/C5NJ03053F

    Article  CAS  Google Scholar 

  2. Bai X, Wang Y, Song Z et al (2020) The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci 21:2480. https://doi.org/10.3390/ijms21072480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mateo D, Morales P, Ávalos A, Haza AI (2014) Oxidative stress contributes to gold nanoparticle-induced cytotoxicity in human tumor cells. Toxicol Mech Methods 24:161–172. https://doi.org/10.3109/15376516.2013.869783

    Article  CAS  PubMed  Google Scholar 

  4. Zhou X, Huang X, Qi X et al (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846. https://doi.org/10.1021/jp903821n

    Article  CAS  Google Scholar 

  5. Polavarapu L, Xu Q-H (2009) A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties. Nanotechnology. https://doi.org/10.1088/0957-4484/20/18/185606

    Article  PubMed  Google Scholar 

  6. Park Y, Hong YN, Weyers A et al (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69. https://doi.org/10.1049/iet-nbt.2010.0033

    Article  CAS  PubMed  Google Scholar 

  7. Ramakrishna M, Rajesh Babu D, Gengan RM et al (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostructure Chem 6:1–13. https://doi.org/10.1007/s40097-015-0173-y

    Article  CAS  Google Scholar 

  8. Dogra S, Sharma MD, Tabassum S, Mishra P, Bhatt AKBP (2023) Green biosynthesis of silver nanoparticles (AgNPs) from Vitex negundo plant extract and its phytochemical screening and antimicrobial assesment next to pathogenic microbes. J Microbiol Biotechnol Food Sci 12:1–7

    Google Scholar 

  9. Bhuyar P, Rahim MHA, Sundararaju S et al (2020) Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1186/s43088-019-0031-y

    Article  Google Scholar 

  10. Zeiri Y, Elia P, Zach R et al (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomedicine. https://doi.org/10.2147/IJN.S57343

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gubitosa J, Rizzi V, Lopedota A et al (2018) One pot environmental friendly synthesis of gold nanoparticles using Punica granatum Juice: a novel antioxidant agent for future dermatological and cosmetic applications. J Colloid Interface Sci 521:50–61. https://doi.org/10.1016/j.jcis.2018.02.069

    Article  CAS  PubMed  Google Scholar 

  12. Gubitosa J, Rizzi V, Fini P et al (2020) Multifunctional green synthetized gold nanoparticles/chitosan/ellagic acid self-assembly: Antioxidant, sun filter and tyrosinase-inhibitor properties. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110170

    Article  Google Scholar 

  13. Entezari Heravi R, Zakeri S, Nazari P (2018) Anticancer activity evaluation of green synthesised gold–silver alloy nanoparticles on colourectal HT-29 and prostate DU-145 carcinoma cell lines. Micro Nano Lett 13:1475–1479. https://doi.org/10.1049/mnl.2018.0235

    Article  CAS  Google Scholar 

  14. Muniyappan N, Nagarajan NS (2014) Green synthesis of gold nanoparticles using Curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. J Environ Chem Eng 2:2037–2044. https://doi.org/10.1016/j.jece.2014.03.004

    Article  CAS  Google Scholar 

  15. Mandhata CP, Sahoo CR, Mahanta CS, Padhy RN (2021) Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst Eng 44:1617–1626. https://doi.org/10.1007/s00449-021-02544-4

    Article  CAS  PubMed  Google Scholar 

  16. Hazuda D, Blau CU, Felock P et al (1999) Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antivir Chem Chemother 10:63–70. https://doi.org/10.1177/095632029901000202

    Article  CAS  PubMed  Google Scholar 

  17. Kanipandian N, Thirumurugan R (2014) A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind Crops Prod 55:1–10. https://doi.org/10.1016/j.indcrop.2014.01.042

    Article  CAS  Google Scholar 

  18. El-Borady OM, Fawzy M, Hosny M (2021) Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl Nanosci. https://doi.org/10.1007/s13204-021-01776-w

    Article  Google Scholar 

  19. Sahoo CR, Paidesetty SK, Padhy RN (2020) Nostocine a derivatives as human DNA topoisomerase II-alpha inhibitor. Indian J Pharm Educ Res 54:698–704. https://doi.org/10.5530/ijper.54.3.120

    Article  CAS  Google Scholar 

  20. Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)−thiosulfate and gold(III)−chloride complexes. Langmuir 22:2780–2787. https://doi.org/10.1021/la052652c

    Article  CAS  PubMed  Google Scholar 

  21. Bakir E EN (2020) Cyanobacteria as nanogold factories: The chemical validation and perspective of the association between gold nanoparticles and cyanobacterial glycogen. https://doi.org/10.21203/rs.3.rs-45902/v1

  22. El-Sheekh MM, Hassan LHS, Morsi HH (2021) Evaluation of antimicrobial activities of blue-green algae-mediated silver and gold nanoparticles. Rend Lincei Sci Fis e Nat 32:747–759. https://doi.org/10.1007/s12210-021-01016-x

    Article  Google Scholar 

  23. Ramirez O, Bonardd S, Saldías C et al (2017) Biobased chitosan nanocomposite films containing gold nanoparticles: Obtainment, characterization, and catalytic activity assessment. ACS Appl Mater Interfaces 9:16561–16570. https://doi.org/10.1021/acsami.7b04422

    Article  CAS  PubMed  Google Scholar 

  24. Saluja TS, Kumar V, Agrawal M et al (2020) Mitochondrial stress–mediated targeting of quiescent cancer stem cells in oral squamous cell carcinoma. Cancer Manag Res 12:4519–4530. https://doi.org/10.2147/CMAR.S252292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alsenani F, Tupally KR, Chua ET et al (2020) Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 28:1834–1841. https://doi.org/10.1016/j.jsps.2020.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skočibušić M, Lacić S, Rašić Z (2019) Evaluation of antimicrobial potential of the marine cyanobacterium. J Adv Microbiol, Rivularia mesenterica. https://doi.org/10.9734/jamb/2019/v16i430128

    Book  Google Scholar 

  27. Mazur-Marzec H, Cegłowska M, Konkel R, Pyrć K (2021) Antiviral cyanometabolites—a review. Biomolecules 11:474. https://doi.org/10.3390/biom11030474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shahid A, Khurshid M, Aslam B et al (2022) Cyanobacteria derived compounds: emerging drugs for cancer management. J Basic Microbiol 62:1125–1142. https://doi.org/10.1002/jobm.202100459

    Article  PubMed  Google Scholar 

  29. Papendorf O, König GM, Wright AD (1998) Hierridin B and 2,4-dimethoxy-6-heptadecyl-phenol, secondary metabolites from the cyanobacterium Phormidium ectocarpi with antiplasmodial activity. Phytochemistry 49:2383–2386. https://doi.org/10.1016/S0031-9422(98)00440-3

    Article  CAS  PubMed  Google Scholar 

  30. Pisoschi AM, Negulescu GP (2012) Methods for total antioxidant activity determination: a review. Biochem Anal Biochem. https://doi.org/10.4172/2161-1009.1000106

    Article  Google Scholar 

  31. Hassan S, Meenatchi R, Pachillu K et al (2022) Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 62:999–1029. https://doi.org/10.1002/jobm.202100477

    Article  PubMed  Google Scholar 

  32. Bharanidharan M, Sivasubramanian VNS (2013) Evaluation of antioxidant and antimicrobial potential of cyanobacteria, Chroococcus turgidus (Kützing) Nägeli. Int J Curr Microbiol Appl Sci 2:300–305

    Google Scholar 

  33. Guedes AC, Amaro HM, Gião MS, Malcata FX (2013) Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chem 138:638–643. https://doi.org/10.1016/j.foodchem.2012.09.106

    Article  CAS  PubMed  Google Scholar 

  34. Rajishamol MP, Lekshmi S, Vijayalakshmy KCSA (2016) Antioxidant activity of cyanobacteria isolated from cochin estuary. Indian J Geo-Marine Sci 45:974–977

    Google Scholar 

  35. Okubo T, Yokoyama Y, Kano K, Kano I (2004) Molecular mechanism of cell death induced by the antioxidant tert-butylhydroxyanisole in human monocytic leukemia U937 cells. Biol Pharm Bull 27:295–302. https://doi.org/10.1248/bpb.27.295

    Article  CAS  PubMed  Google Scholar 

  36. Celestino MT, Magalhães U de O, Fraga AGM, et al (2012) Rational use of antioxidants in solid oral pharmaceutical preparations. Brazilian J Pharm Sci 48:405–415. https://doi.org/10.1590/S1984-82502012000300007

  37. Si H-Y, Li D-P, Wang T-M et al (2010) Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nanosci Nanotechnol 10:2325–2331. https://doi.org/10.1166/jnn.2010.1913

    Article  CAS  PubMed  Google Scholar 

  38. Reddy PD, Satyanarayana T, Latha SPM (2010) Local drug delivery of herbs for treatment of periodontitis. J Innov trends Pharm Sci 1:245–251

    Google Scholar 

  39. Meher RK, Pragyandipta P, Pedapati RK et al (2021) Rational design of novel N -alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chem Biol Drug Des 98:445–465. https://doi.org/10.1111/cbdd.13901

    Article  CAS  PubMed  Google Scholar 

  40. Yuan Q, Bomma M, Xiao Z (2021) Enhanced extracellular synthesis of gold nanoparticles by soluble extracts from Escherichia coli transformed with Rhizobium tropici phytochelatin synthase gene. Metals (Basel) 11:472. https://doi.org/10.3390/met11030472

    Article  CAS  Google Scholar 

  41. Bishoyi AK, Sahoo CR, Sahoo AP, Padhy RN (2021) Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci 11:389–398. https://doi.org/10.1007/s13204-020-01593-7

    Article  CAS  Google Scholar 

  42. Nallappan D, Fauzi AN, Krishna BS et al (2021) Green biosynthesis, antioxidant, antibacterial, and anticancer activities of silver nanoparticles of Luffa acutangula leaf extract. Biomed Res Int 2021:1–28. https://doi.org/10.1155/2021/5125681

    Article  CAS  Google Scholar 

  43. Meher RK, Pragyandipta P, Reddy PK et al (2022) Development of 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents for the management of breast cancer. J Biomol Struct Dyn 40:13136–13153. https://doi.org/10.1080/07391102.2021.1982008

    Article  CAS  PubMed  Google Scholar 

  44. He YQ, Liu SP, Kong L, Liu ZF (2005) A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochim Acta Part A Mol Biomol Spectrosc 61:2861–2866. https://doi.org/10.1016/j.saa.2004.10.035

    Article  CAS  Google Scholar 

  45. Parial D, Gopal PK, Paul S, Pal R (2016) Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles. J Appl Phycol 28:3395–3406. https://doi.org/10.1007/s10811-016-0880-x

    Article  CAS  Google Scholar 

  46. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138. https://doi.org/10.1016/j.procbio.2009.06.005

    Article  CAS  Google Scholar 

  47. Algotiml R, Gab-alla A, Seoudi R et al (2022) Anticancer and antimicrobial activity of red sea seaweeds extracts-mediated gold nanoparticles. J Pure Appl Microbiol. https://doi.org/10.22207/JPAM.16.1.11

    Article  Google Scholar 

  48. Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–12. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  49. Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825. https://doi.org/10.1002/adma.200902557

    Article  CAS  PubMed  Google Scholar 

  50. Rajeshkumar S, Kumar SV, Malarkodi C, Vanaja M, Paulkumar KAG (2017) Optimized synthesis of gold nanoparticles using green chemical process and its In vitro anticancer activity against HepG2 and A549 cell lines. Mech Mater Sci Eng J. https://doi.org/10.2412/mmse.95.26.479

    Article  Google Scholar 

  51. Nowruzi B, Anvar AAH (2020) Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1. J Microb World 13(1):138–153

    Google Scholar 

  52. El-Sheekh MM, Osman MEH, Dyab MA, Amer MS (2006) Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol 21:42–50. https://doi.org/10.1016/j.etap.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  53. Pham HTL, Nguyen LTT, Duong TA et al (2017) Diversity and bioactivities of nostocacean cyanobacteria isolated from paddy soil in Vietnam. Syst Appl Microbiol 40:470–481. https://doi.org/10.1016/j.syapm.2017.08.001

    Article  PubMed  Google Scholar 

  54. Agrawal MK (2016) Antimicrobial activity of Nostoc calcicola (Cyanobacteria) isolated from central India against human pathogens. Asian J Pharm. https://doi.org/10.22377/ajp.v10i04.892

    Article  Google Scholar 

  55. Asthana RK, Deepali TMK et al (2009) Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Appl Phycol 21:81–88. https://doi.org/10.1007/s10811-008-9328-2

    Article  CAS  Google Scholar 

  56. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789. https://doi.org/10.1039/c0jm00817f

    Article  CAS  Google Scholar 

  57. Bhuyar P, Rahim MHA, Maniam GP et al (2020) Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Appl Sci. https://doi.org/10.1007/s42452-020-03698-8

    Article  Google Scholar 

  58. Guerreiro A, Andrade MA, Menezes C et al (2020) Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins (Basel) 12:548. https://doi.org/10.3390/toxins12090548

    Article  CAS  PubMed  Google Scholar 

  59. Baliyan S, Mukherjee R, Priyadarshini A et al (2022) Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 27:1326. https://doi.org/10.3390/molecules27041326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mai V-C, Nguyen B-H, Nguyen D-D, Nguyen L-A-V (2017) Nostoc calcicola extract improved the antioxidative response of soybean to cowpea aphid. Bot Stud 58:55. https://doi.org/10.1186/s40529-017-0211-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yasin D, Zafaryab M, Ansari S et al (2019) Evaluation of antioxidant and anti-proliferative efficacy of Nostoc muscorum NCCU-442. Biocatal Agric Biotechnol 17:284–293. https://doi.org/10.1016/j.bcab.2018.12.001

    Article  Google Scholar 

  62. Bhuyar P, Rahim MH, Sundararaju S, Maniam GPGN (2020) Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Glob J Environ Sci Manag 6:47–58

    CAS  Google Scholar 

  63. Sargazi S, Laraib U, Er S et al (2022) Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials 12:1102. https://doi.org/10.3390/nano12071102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nowruzi B, Haghighat S, Fahimi H, Mohammadi E (2018) Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. J Pharm Heal Serv Res 9:5–12. https://doi.org/10.1111/jphs.12202

    Article  Google Scholar 

  65. Mondal A, Bose S, Banerjee S et al (2020) Marine cyanobacteria and microalgae metabolites—a rich source of potential anticancer drugs. Mar Drugs 18:476. https://doi.org/10.3390/md18090476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dean IMS & SUM Hospital, Siksha O Anusandhan, deemed to be University (SOADU), Bhubaneswar-30 for necessary facilities. This is a piece of work supported by SOADU, PhD-Fellowship No.1981611007/2019. We are grateful to the honorable VC of SOADU, Prof. Dr. PK Nanda for encouragements.

Author information

Authors and Affiliations

Authors

Contributions

CPM: contributed to conceptualization, Investigation, Methodology, Data curation, formal analysis, writing-original draft, and editing. AKB: contributed to conceptualization, Methodology, Validation; Visualization, Writing, review, editing, CRS: contributed to conceptualization, Validation, Methodology, SS: contributed to formal analysis, SB: contributed to formal analysis, BRJ: contributed to methodology, validation, RKM: contributed to antiproliferative activity Methodology, Writing and editing, DD: contributed to antiproliferative activity, Reviewing, Editing. RNP: contributed to conceptualization, Supervision, Editing, Validation, and fund acquisition.

Corresponding author

Correspondence to Rabindra Nath Padhy.

Ethics declarations

Conflict of interest

The authors declare that they do not have any known competing interest that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1740 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandhata, C.P., Bishoyi, A.K., Sahoo, C.R. et al. Investigation of in vitro antimicrobial, antioxidant and antiproliferative activities of Nostoc calcicola biosynthesized gold nanoparticles. Bioprocess Biosyst Eng 46, 1341–1350 (2023). https://doi.org/10.1007/s00449-023-02905-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02905-1

Keywords

Navigation