Skip to main content
Log in

Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work focused on the development of an inexpensive carbon source and the improvement of the fermentation-foam fractionation coupling system. The rhamnolipids production capacity of waste frying oil (WFO) was evaluated. The suitable bacterial cultivation of seed liquid and the addition amount of WFO was 16 h and 2% (v/v), respectively. A combined strategy of cell immobilization and oil emulsion avoid cell entrainment inside foam and improves the oil mass transfer rate. The immobilization conditions of bacterial cells into alginate-chitosan-alginate (ACA) microcapsules were optimized using the response surface method (RSM). Under the optimal conditions, rhamnolipids production using batch fermentation with immobilized strain reached 7.18 ± 0.23% g/L. WFO was emulsified into a fermentation medium using rhamnolipids as emulsifier (0.5 g/L). By monitoring dissolved oxygen, 30 mL/min was selected as a suitable air volumetric flow rate for fermentation-foam fractionation coupling operation. The total production and recovery percentage of rhamnolipids were 11.29 ± 0.36 g/L and 95.62 ± 0.38%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Johnson P, Trybala A, Starov V, Pinfield VJ (2021) Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interfac. https://doi.org/10.1016/j.cis.2020.102340

    Article  Google Scholar 

  2. Badmus SO, Amusa HK, Oyehan TA, Saleh TA (2021) Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. Environ Sci Pollut R. https://doi.org/10.1007/s11356-021-16483-w

    Article  Google Scholar 

  3. Manaargadoo-Catin M, Ali-Cherif A, Pougnas JL, Perrin C (2016) Hemolysis by surfactants—a review. Adv Colloid Interfac. https://doi.org/10.1016/j.cis.2015.10.011

    Article  Google Scholar 

  4. Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T (2022) Microbial biosurfactants: a review of recent environmental applications. Bioengineered. https://doi.org/10.1080/21655979.2022.2074621

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sharma S, Verma R, Pandey LM (2019) Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatal Agr Biotechnol. https://doi.org/10.1016/j.bcab.2019.101322

    Article  Google Scholar 

  6. Qu M, Hou J, Liang T, Qi P (2021) Amphiphilic rhamnolipid molybdenum disulfide nanosheets for oil recovery. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.1c00102

    Article  Google Scholar 

  7. Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng. https://doi.org/10.1002/bit.26517

    Article  PubMed  PubMed Central  Google Scholar 

  8. Monnier N, Cordier M, Dahi A, Santoni V, Guénin S, Clément C, Sarazin C, Penaud A, Dorey S, Cordelier S, Rippa S (2020) Semipurified rhamnolipid mixes protect Brassica napus against Leptosphaeria maculans early infections. Phytopathology. https://doi.org/10.1094/PHYTO-07-19-0275-R

    Article  PubMed  Google Scholar 

  9. Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact. https://doi.org/10.1186/s12934-017-0753-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ehinmitola EO, Aransiola EF, Adeagbo OP (2018) Comparative study of various carbon sources on rhamnolipid production. S Afr J Chem Eng. https://doi.org/10.1016/j.sajce.2018.09.001

    Article  Google Scholar 

  11. Sharma S, Pandey LM (2020) Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Bioresource Technol. https://doi.org/10.1016/j.biortech.2020.123261

    Article  Google Scholar 

  12. Verma R, Sharma S, Kundu LM, Pandey LM (2020) Experimental investigation of molasses as a sole nutrient for the production of an alternative metabolite biosurfactant. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101632

    Article  Google Scholar 

  13. Sharma S, Verma R, Dhull S, Maiti SK, Pandey LM (2022) Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor. Bioproc Biosyst Eng. https://doi.org/10.1007/s00449-021-02661-0

    Article  Google Scholar 

  14. Verma R, Sharma S, Kundu LM, Maiti SK, Pandey LM (2023) Enhanced production of biosurfactant by Bacillus subtilis RSL2 in semicontinuous bioreactor utilizing molasses as a sole substrate. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2022.12.007

    Article  PubMed  Google Scholar 

  15. Ramírez IM, Tsaousi K, Rudden M, Marchant R, Alameda EJ, Román MG, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresource Technol. https://doi.org/10.1016/j.biortech.2015.09.012

    Article  Google Scholar 

  16. Radzuan MN, Banat IM, Winterburn J (2017) Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresource Technol. https://doi.org/10.1016/j.biortech.2016.11.052

    Article  Google Scholar 

  17. Fonseca JM, Teleken JG, de Cinque AV, da Silva C (2019) Biodiesel from waste frying oils: methods of production and purification. Energ Convers Manag. https://doi.org/10.1016/j.enconman.2019.01.061

    Article  Google Scholar 

  18. Sharma S, Datta P, Kumar B, Tiwari P, Pandey LM (2019) Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Biodegradation. https://doi.org/10.1007/s10532-019-09874-x

    Article  PubMed  Google Scholar 

  19. Pathania AS, Jana AK (2020) Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: Improvement through co-substrate optimization. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104304

    Article  Google Scholar 

  20. Sun H, Wang L, Nie H, Diwu Z, Nie M, Zhang B (2021) Optimization and characterization of rhamnolipid production by Pseudomonas aeruginosa NY3 using waste frying oil as the sole carbon. Biotechnol Progr. https://doi.org/10.1002/btpr.3155

    Article  Google Scholar 

  21. Bao Q, Huang L, Xiu J, Yi L, Zhang Y, Wu B (2022) Study on the thermal washing of oily sludge used by rhamnolipid/sophorolipid binary mixed bio-surfactant systems. Ecotox Environ Safe. https://doi.org/10.1016/j.ecoenv.2022.113696

    Article  Google Scholar 

  22. Calfee MW, Shelton JG, McCubrey JA, Pesci EC (2005) Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-produced surfactant. Infect Immun. https://doi.org/10.1016/j.biotechadv.2006.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  23. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2006.08.001

    Article  PubMed  Google Scholar 

  24. Eslami P, Hajfarajollah H, Bazsefidpar S (2020) Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv. https://doi.org/10.1039/D0RA04953K

    Article  PubMed  PubMed Central  Google Scholar 

  25. Invally K, Sancheti A, Ju LK (2019) A new approach for downstream purification of rhamnolipid biosurfactants. Food Bioprod Process. https://doi.org/10.1016/j.fbp.2018.12.003

    Article  Google Scholar 

  26. Sarachat T, Pornsunthorntawee O, Chavadej S, Rujiravanit R (2010) Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2009.08.012

    Article  PubMed  Google Scholar 

  27. Buckley T, Xu X, Rudolph V, Firouzi M, Shukla P (2022) Review of foam fractionation as a water treatment technology. Sep Sci Technol. https://doi.org/10.1080/01496395.2021.1946698

    Article  Google Scholar 

  28. Najmi Z, Ebrahimipour G, Franzetti A, Banat IM (2018) In situ downstream strategies for cost-effective bio/surfactant recovery. Biotechnol Appl Bioc. https://doi.org/10.1002/bab.1641

    Article  Google Scholar 

  29. Oraby A, Weickardt I, Zibek S (2022) Foam fractionation methods in aerobic fermentation processes. Biotechnol Bioeng. https://doi.org/10.1002/bit.28102

    Article  PubMed  Google Scholar 

  30. Chen C, Li D, Li R, Shen F, Xiao G, Zhou J (2021) Enhanced biosurfactant production in a continuous fermentation coupled with in situ foam separation. Chem Eng Process. https://doi.org/10.1016/j.cep.2020.108206

    Article  Google Scholar 

  31. Hesham AEL, Mostafa YS, AlSharqi LEO (2020) Optimization of citric acid production by immobilized cells of novel yeast isolates. Mycobiology. https://doi.org/10.1080/12298093.2020.1726854

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giese EC, Silva DD, Costa AF, Almeida SG, Dussán KJ (2020) Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2020.1751583

    Article  PubMed  Google Scholar 

  33. Sun D, Li B, Ye F, Zhu X, Lu T, Tian Y (2018) Fatigue behavior of microcapsule-induced self-healing asphalt concrete. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.03.281

    Article  Google Scholar 

  34. Ma Y, Zhang Y, Liu Y, Chen L, Li S, Zhao W, Sun G, Li N, Wang Y, Guo X, Lv G, Ma X (2013) Investigation of alginate–ϵ-poly-l-lysine microcapsules for cell microencapsulation. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.34418

    Article  PubMed  Google Scholar 

  35. Cui H, Cao G, Zhu S, Mu J, Chou X (2022) Study on the preparation and formation factors of frother emulsion. Colloid Surf A. https://doi.org/10.1016/j.colsurfa.2021.128155

    Article  Google Scholar 

  36. Jiang J, Zu Y, Li X, Meng Q, Long X (2020) Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresource Technol. https://doi.org/10.1016/j.biortech.2019.122394

    Article  Google Scholar 

  37. Goddard WA III, Tang Y, Shuler P, Blanco M, Wu Y, Jang SS (2005) Screening methods for selection of surfactant formulations for IOR from fractured carbonate reservoirs. Calif Ins Technol. https://doi.org/10.2172/842013

    Article  Google Scholar 

  38. Sauvage S, Gaviard C, Tahrioui A, Coquet L, Le H, Alexandre S, Abdelkrim AB, Bouffartigues E, Lesouhaitier O, Chevalier S, Jouenne T, Hardouin J (2022) Impact of carbon source supplementations on Pseudomonas aeruginosa physiology. J Proteome Res. https://doi.org/10.1021/acs.jproteome.1c00936

    Article  PubMed  Google Scholar 

  39. Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact. https://doi.org/10.1186/s12934-018-0938-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dobler L, Vilela LF, Almeida RV, Neves BC (2016) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol. https://doi.org/10.1016/j.nbt.2015.09.005

    Article  Google Scholar 

  41. Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biot. https://doi.org/10.1007/s00253-016-7564-y

    Article  Google Scholar 

  42. Bahia FM, de Almeida GC, de Andrade LP, Campos CG, Queiroz LR, da Silva RLV, Abdelnur PV, Corrêa JR, Bettiga M, Parachin NS (2018) Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep. https://doi.org/10.1038/s41598-018-21230-2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Inaba T, Tokumoto Y, Miyazaki Y, Inoue N, Maseda H, Nakajima-Kambe T, Uchiyama H, Nomura N (2013) Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Appl Environ Microb. https://doi.org/10.1128/AEM.01664-13

    Article  Google Scholar 

  44. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Environ Microb Appl. https://doi.org/10.1128/AEM.66.8.3262-3268.2000

    Article  Google Scholar 

  45. Odaneth AA, Vadgama RN, Bhat AD, Lali AM (2016) Tuning lipase reaction for production of fatty acids from oil. Appl Biochem Biotech. https://doi.org/10.1007/s12010-016-2113-9

    Article  Google Scholar 

  46. Pathania AS, Jana AK (2020) Improvement in production of rhamnolipids using fried oil with hydrophilic co-substrate by indigenous Pseudomonas aeruginosa NJ2 and characterizations. Appl Biochem Biotech. https://doi.org/10.1007/s12010-019-03221-9

    Article  Google Scholar 

  47. Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biot. https://doi.org/10.1007/s00253-016-8041-3

    Article  Google Scholar 

  48. Lotti M, Pleiss J, Valero F, Ferrer P (2015) Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J. https://doi.org/10.1002/biot.201400158

    Article  PubMed  Google Scholar 

  49. Abdel-Mawgoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol. https://doi.org/10.1016/j.chembiol.2013.11.010

    Article  PubMed  Google Scholar 

  50. Nayak PK, Dash UMA, Rayaguru K, Krishnan KR (2016) Physio-chemical changes during repeated frying of cooked oil: a review. J Food Biochem. https://doi.org/10.1111/jfbc.12215

    Article  Google Scholar 

  51. Powell CD, Quain DE, Smart KA (2003) The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res. https://doi.org/10.1016/S1567-1356(03)00002-3

    Article  PubMed  Google Scholar 

  52. De Lima CJB, Ribeiro EJ, Servulo EFC, Resende MM, Cardoso VL (2009) Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl Biochem Biotech. https://doi.org/10.1007/s12010-008-8188-1

    Article  Google Scholar 

  53. Policastro G, Giugliano M, Luongo V, Napolitano R, Fabbricino M (2021) Carbon catabolite repression occurrence in photo fermentation of ethanol-rich substrates. J Environ Manag. https://doi.org/10.1016/j.jenvman.2021.113371

    Article  Google Scholar 

  54. Shi S, Teng Z, Liu J, Li T (2022) Conversion of waste cooking oil to rhamnolipid by a newly oleophylic Pseudomonas aeruginosa WO2. Int J Env Res Pub He. https://doi.org/10.3390/ijerph19031700

    Article  Google Scholar 

  55. Rasheed A, Ghous T, Mumtaz S, Zafar MN, Akhter K, Shabir R, Shafqat SS (2020) Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI). Open Chem. https://doi.org/10.1515/chem-2020-0031

    Article  Google Scholar 

  56. Wang J, Liang J, Sun L, Li G, Temmink H, Rijnaarts HH (2020) Granule-based immobilization and activity enhancement of anammox biomass via PVA/CS and PVA/CS/Fe gel beads. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123448

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gatto ML, Mengucci P, Munteanu D, Nasini R, Tognoli E, Denti L, Gatto A (2023) Beads for cell immobilization: comparison of alternative additive manufacturing techniques. Bioengineering. https://doi.org/10.3390/bioengineering10020150

    Article  PubMed  PubMed Central  Google Scholar 

  58. Reque PM, Brandelli A (2021) Encapsulation of probiotics and nutraceuticals: applications in functional food industry. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2021.05.022

    Article  Google Scholar 

  59. Rodrigues FJ, Omura MH, Cedran MF, Dekker RF, Barbosa-Dekker AM, Garcia S (2017) Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres. J Microencapsul. https://doi.org/10.1080/02652048.2017.1343872

    Article  PubMed  Google Scholar 

  60. Rather SA, Akhter R, Masoodi FA, Gani A, Wani SM (2017) Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297. LWT-Food Sci Technol. https://doi.org/10.1016/j.lwt.2017.04.036

    Article  Google Scholar 

  61. Qi X, Simsek S, Ohm JB, Chen B, Rao J (2020) Viability of Lactobacillus rhamnosus GG microencapsulated in alginate/chitosan hydrogel particles during storage and simulated gastrointestinal digestion: role of chitosan molecular weight. Soft Matter. https://doi.org/10.1039/C9SM02387A

    Article  PubMed  Google Scholar 

  62. Li S, Zhang Y, Chen L, Li N, Xie H, Guo X, Zhao S, Yu W, Lv Y, Lv G, Wu H, Ma X (2015) The relationship between the inflammatory response and cell adhesion on alginate-chitosan-alginate microcapsules after transplantation. J Biomed Materi Res A. https://doi.org/10.1002/jbm.a.35369

    Article  Google Scholar 

  63. Silva MP, Tulini FL, Matos-Jr FE, Oliveira MG, Thomazini M, Fávaro-Trindade CS (2018) Application of spray chilling and electrostatic interaction to produce lipid microparticles loaded with probiotics as an alternative to improve resistance under stress conditions. Food Hydrocolloid. https://doi.org/10.1016/j.foodhyd.2018.05.001

    Article  Google Scholar 

  64. Yu W, Song H, Zheng G, Liu X, Zhang Y, Ma X (2011) Study on membrane characteristics of alginate-chitosan microcapsule with cell growth. J Membrane Sci. https://doi.org/10.1016/j.memsci.2011.04.053

    Article  Google Scholar 

  65. Wong YY, Yuan S, Choong C (2011) Degradation of PEG and non-PEG alginate-chitosan microcapsules in different pH environments. Ploym Degrad Stabil. https://doi.org/10.1016/j.polymdegradstab.2011.09.009

    Article  Google Scholar 

  66. Hecht H, Srebnik S (2016) Structural characterization of sodium alginate and calcium alginate. Biomacromol. https://doi.org/10.1021/acs.biomac.6b00378

    Article  Google Scholar 

  67. Liang H, Zhou B, Li J, He Y, Pei Y, Li B (2016) Engineering functional alginate beads for encapsulation of Pickering emulsions stabilized by colloidal particles. RSC Adv. https://doi.org/10.1039/C6RA21755A

    Article  PubMed  Google Scholar 

  68. Ta LP, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV (2021) Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2021.120342

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li N, Han Z, O’Donnell TJ, Kurasaki R, Kajihara L, Williams PG, Tang Y, Su WW (2020) Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant. Appl Microbiol Biot. https://doi.org/10.1007/s00253-020-10753-2

    Article  Google Scholar 

  70. Gupta K, Mishra PK, Srivastava P (2007) A correlative evaluation of morphology and rheology of Aspergillus terreus during lovastatin fermentation. Biotechnol Bioprocess Eng. https://doi.org/10.1007/BF03028640

    Article  Google Scholar 

  71. Yu Q, Zhang B, Ma F, Jia C, Xiao C, Zhang B, Xing L, Li M (2015) Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chem-Biol Interact. https://doi.org/10.1016/j.cbi.2014.12.014

    Article  PubMed  Google Scholar 

  72. Falk NA (2019) Surfactants as antimicrobials: a brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. J Surfactants Deterg. https://doi.org/10.1002/jsde.12293

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhou C, Wang Y (2020) Structure–activity relationship of cationic surfactants as antimicrobial agents. Curr Opin Colloid In. https://doi.org/10.1016/j.cocis.2019.11.009

    Article  Google Scholar 

  74. Krasowska A, Biegalska A, Lukaszewicz M, Krasowska A, Łukaszewicz M (2012) Comparison of antimicrobial activity of three commercially used quaternary ammonium surfactants. Sepsis. https://doi.org/10.1066/S10025120006

    Article  Google Scholar 

  75. Lin X, Liu B, Luo W, Lin Z, Liang Z, Kang X, Deng C, Wen Y (2023) Study on the bactericidal activity of dodecyl dipropylene triamine and anionic mixed surfactant systems. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.121606

    Article  Google Scholar 

  76. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biot. https://doi.org/10.1007/s00253-009-2355-3

    Article  Google Scholar 

  77. Mu XT, Ju XJ, Zhang L, Huang XB, Faraj Y, Liu Z, Wang W, Xie R, Deng Y, Chu LY (2019) Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. J Membrane Sci. https://doi.org/10.1016/j.memsci.2019.117275

    Article  Google Scholar 

  78. Jia L, Liu W, Cao J, Wu Z, Yang C (2021) Foam fractionation for effective removal of Pseudomonas aeruginosa from water body: strengthening foam drainage by artificially inducing foam evolution. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112628

    Article  PubMed  Google Scholar 

  79. Rasdi WNAM, Bilad MR, Shamsuddin N, Wirzal MDH, Nordin NAHM, Budhijanto W, Budhijanto W, Khan AL (2022) A novel membrane-based bubble generator for oxygen dissolution in water. Chem Eng Process. https://doi.org/10.1016/j.cep.2022.108938

    Article  Google Scholar 

  80. Zhang D, Dong K, Xu D, Zheng H, Wu Z, Xu X (2015) Process improvement for fermentation coupling with foam separation: a convenient strategy for cell recycle. Asia-Pac J Chem Eng. https://doi.org/10.1002/apj.1893

    Article  Google Scholar 

  81. Amaral PF, Freire MG, Rocha-Leão MHM, Marrucho IM, Coutinho JA, Coelho MAZ (2008) Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol Bioeng. https://doi.org/10.1002/bit.21640

    Article  PubMed  Google Scholar 

  82. Zhao F, Zhang J, Shi R, Han S, Ma F, Zhang Y (2015) Production of biosurfactant by a Pseudomonas aeruginosa isolate and its applicability to in situ microbial enhanced oil recovery under anoxic conditions. RSC Adv. https://doi.org/10.1039/C5RA03559G

    Article  PubMed  Google Scholar 

  83. Morita T, Fukuoka T, Konishi M, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2009) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-009-1945-4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J. https://doi.org/10.1016/j.bej.2005.08.028

    Article  Google Scholar 

  85. Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X (2015) Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J. https://doi.org/10.1016/j.bej.2015.05.001

    Article  Google Scholar 

  86. Nawrath MM, Ottenheim C, Wu JC, Zimmermann W (2020) Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids. MicrobiologyOpen. https://doi.org/10.1002/mbo3.1019

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ramirez CAO, Kwan A, Li QX (2020) Rhamnolipids induced by glycerol enhance dibenzothiophene biodegradation in Burkholderia sp. C3. Engineering. https://doi.org/10.1016/j.eng.2020.01.006

    Article  Google Scholar 

  88. Zhao F, Yuan M, Lei L, Li C, Xu X (2021) Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124605

    Article  PubMed  Google Scholar 

  89. Zhao F, Jiang H, Sun H, Liu C, Han S, Zhang Y (2019) Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge. RSC Adv. https://doi.org/10.1039/C8RA09351B

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brown LR (2010) Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol. https://doi.org/10.1016/S0376-7361(08)70466-7

    Article  PubMed  Google Scholar 

  91. Zhao F, Shi R, Ma F, Han S, Zhang Y (2018) Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Microb Cell Fact. https://doi.org/10.1186/s12934-018-0888-9

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zheng H, Fan S, Liu W, Zhang M (2020) Production and separation of Pseudomonas aeruginosa rhamnolipids using coupling technology of cyclic fermentation with foam fractionation. Chem Eng Process. https://doi.org/10.1016/j.cep.2019.107776

    Article  Google Scholar 

  93. Sheikh Z, Pawar S, Rathod VK (2019) Enhancement of rhamnolipid production through ultrasound application and response surface methodology. Process Biochem. https://doi.org/10.1016/j.procbio.2019.06.023

    Article  Google Scholar 

  94. Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2011.06.005

    Article  PubMed  Google Scholar 

  95. Xu N, Liu S, Xu L, Zhou J, Xin F, Zhang W, Qian X, Li M, Dong W, Jiang M (2020) Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam-control and repeated fed-batch fermentation strategy. Biotechnol Biofuels. https://doi.org/10.1186/s13068-020-01716-w

    Article  PubMed  PubMed Central  Google Scholar 

  96. He N, Wu T, Jiang J, Long X, Shao B, Meng Q (2017) Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Colloid Surf B. https://doi.org/10.1016/j.colsurfb.2017.06.007

    Article  Google Scholar 

  97. Siddiqui MA, Parnthong J, Kungsanant S, Chavadej S, Chaiprapat S (2022) Influences of specific surfactant structures on biohydrogen production from oily wastewater in batch and continuous anaerobic dark fermentation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.127617

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22108059) and the National Key Research and Development Program of China (2021YFC3201404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15184 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, W., Yin, H. et al. Improving rhamnolipids production using fermentation-foam fractionation coupling system: cell immobilization and waste frying oil emulsion. Bioprocess Biosyst Eng 46, 1175–1194 (2023). https://doi.org/10.1007/s00449-023-02890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02890-5

Keywords

Navigation