Skip to main content
Log in

Investigation of the enhancement for Echinocandin B fermentation with methyl oleate from transcription level

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Capoor MR, Bal AM (2022) Echinocandins. In: Kenakin T (ed) Comprehensive pharmacology. Elsevier, Oxford

    Google Scholar 

  2. Perlin DS, Hope WW (2010) Echinocandins. In: Comarú Pasqualotto A (ed) Aspergillosis: from diagnosis to prevention. Springer Netherlands, Dordrecht

    Google Scholar 

  3. Emri T, Majoros L, Toth V, Pocsi I (2013) Echinocandins: production and applications. Appl Microbiol Biotechnol 97(8):3267–3284

    Article  CAS  PubMed  Google Scholar 

  4. Bofinger P (2019) ECB: time is ripe for a real strategy. Intereconomics 54(6):322–323

    Article  Google Scholar 

  5. Abel J, Rich R, Song J, Tracy J (2016) The measurement and behavior of uncertainty: evidence from the ECB survey of professional forecasters. J Appl Economet 31(3):533–550

    Article  Google Scholar 

  6. Lan N, Yue Q, An ZQ, Bills GF (2020) Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the Echinocandin-producing fungus Aspergillus pachycristatus. J Ind Microbiol Biotechnol 47(1):155–168

    Article  CAS  PubMed  Google Scholar 

  7. Huttel W (2021) Echinocandins: structural diversity, biosynthesis, and development of antimycotics. Appl Microbiol Biotechnol 105(1):55–66

    Article  PubMed  Google Scholar 

  8. Min T, Xiong L, Liang Y, Xu R, Fa C, Yang S, Hu H (2019) Disruption of stcA blocks sterigmatocystin biosynthesis and improves Echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol 35(7):109

    Article  PubMed  Google Scholar 

  9. Birch M, Sibley G (2017) Antifungal chemistry review. In: Chackalamannil S, Rotella D, Ward SE (eds) Comprehensive medicinal chemistry III. Elsevier, Oxford

    Google Scholar 

  10. Mattay J, Houwaart S, Huttel W (2018) Cryptic production of trans-3-hydroxyproline in Echinocandin B biosynthesis. Appl Environ Microbiol 84(7):10

    Article  Google Scholar 

  11. Kumar A, Jaiswal V, Kumar V, Dey A, Kumar A (2018) functional redundancy in Echinocandin B in-cluster transcription factor ecdB of Emericella rugulosa NRRL 11440. Biotechnol Rep 19:e00264

    Article  Google Scholar 

  12. Taj-Aldeen SJ, Salah H, Perez WB, Almaslamani M, Motyl M, AbdulWahab A, Healey KR, Perlin DS (2018) Molecular analysis of resistance and detection of non-wild-type strains using etest epidemiological cutoff values for Amphotericin B and echinocandins for bloodstream candida infections from a tertiary hospital in qatar. Antimicrob Agents Chemother 62(9):9

    Article  Google Scholar 

  13. Toth V, Nagy CT, Pocsi I, Emri T (2012) The Echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic. Appl Microbiol Biotechnol 95(1):113–122

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZB, Wang ZY, Sun JY, Ni L (2020) The dynamics of volatile compounds and their correlation with the microbial succession during the traditional solid-state fermentation of gutian hong qu glutinous rice wine. Food Microbiol 86:10

    Article  Google Scholar 

  15. Zou SP, Zhong W, Xia CJ, Gu YN, Niu K, Zheng YG, Shen YC (2015) Mutagenesis breeding of high Echinocandin B producing strain and further titer improvement with culture medium optimization. Bioprocess Biosyst Eng 38(10):1845–1854

    Article  CAS  PubMed  Google Scholar 

  16. Hu ZC, Peng LY, Zheng YG (2016) Enhancement of Echinocandin B production by a UV- and microwave-induced mutant of Aspergillus nidulans with precursor- and biotin-supplying strategy. Appl Biochem Biotechnol 179(7):1213–1226

    Article  CAS  PubMed  Google Scholar 

  17. Zou SP, Xiong Y, Niu K, Hu ZC, Zheng YG (2019) integrated strategy of temperature shift and mannitol feeding for enhanced production of Echinocandin B by Aspergillus nidulans CCTCC M2012300. 3 Biotech 9(4):8

    Article  Google Scholar 

  18. Hu ZC, Li WJ, Zou SP, Niu K, Zheng YG (2020) Mutagenesis of Echinocandin B overproducing Aspergillus nidulans capable of using starch as main carbon source. Prep Biochem Biotechnol 50(8):745–752

    Article  CAS  PubMed  Google Scholar 

  19. Niu K, Wu XP, Hu XL, Zou SP, Hu ZC, Liu ZQ, Zheng YG (2020) Effects of methyl oleate and microparticle-enhanced cultivation on Echinocandin B fermentation titer. Bioprocess Biosyst Eng 43(11):2009–2015

    Article  CAS  PubMed  Google Scholar 

  20. Zou SP, Han X, Zhu HY, Sheng Q, Tang H, Liu ZQ, Zheng YG (2021) Functional expression of an Echinocandin B deacylase from actinoplanes utahensis in Escherichia coli. Int J Biol Macromol 187:850–857

    Article  CAS  PubMed  Google Scholar 

  21. Niu K, Wu XP, Fu Q, Lang KP, Zou SP, Hu ZC, Liu ZQ, Zheng YG (2021) Effects of lipids and surfactants on the fermentation production of Echinocandin B by Aspergillus nidulans. J Appl Microbiol 131(6):2849–2860

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Jiao RH, Yao LY, Han WB, Lu YH, Tan RX (2016) Control of fungal morphology for improved production of a novel antimicrobial alkaloid by marine-derived fungus Curvularia sp IFB-Z10 under submerged fermentation. Process Biochem 51(2):185–194

    Article  CAS  Google Scholar 

  23. Zou SP, Liu M, Wang QL, Xiong Y, Niu K, Zheng YG, Shen YC (2015) Preparative separation of Echinocandin B from Aspergillus nidulans broth using macroporous resin adsorption chromatography. J Chromatogr B Anal Technol Biomed Life Sci 978:111–117

    Article  Google Scholar 

  24. Son SH, Lee MK, Son YE, Park HS (2021) HbxB is a key regulator for stress response and beta-glucan biogenesis in Aspergillus nidulans. Microorganisms 9(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leal NA, Kim HJ, Hoshika S, Kim MJ, Carrigan MA, Benner SA (2015) Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. ACS Synth Biol 4(4):407–413

    Article  CAS  PubMed  Google Scholar 

  26. Quan C, Wei F, Huang S, Wei K, Chen S, Miao J, Tang D (2022) RNA editing analysis of some chloroplast transcripts and its response to light and salt stress in mesona chinensis benth. J Plant Interact 17(1):779–788

    Article  CAS  Google Scholar 

  27. Shivakumar MC, Manohar S, Ishwar B, Raghu P, Savitha J (2019) Deacylation of Echinocandin B by streptomyces species: a novel method for the production of Echinocandin B nucleus. 3 Biotech 9(11):6

    Article  Google Scholar 

  28. Semighini CP, Marins M, Goldman MH, Goldman GH (2002) Quantitative analysis of the relative transcript levels of ABC transporter atr genes in Aspergillus nidulans by real-time reverse transcription-PCR assay. Appl Environ Microbiol 68(3):1351–1357

    Article  CAS  PubMed  Google Scholar 

  29. Khanthapok P, Sang-Awut N, Chakhonkaen S, Pitngam K, Osadcenco A, Sukrong S, Muangprom A (2017) Identification of ethanol-inducible genes and isolation of the Myb-related protein-like promoter in Oryza Sativa L. J Plant Growth Regul 37(2):452–470

    Article  Google Scholar 

  30. Mouslim J, David L, Petel G, Gendraud M (1993) Effect of exogeneous methyl oleate on the time-course of some parameters of Streptomyces-Hygroscopicus NRRL B-1865 culture. Appl Microbiol Biotechnol 39(4–5):585–588

    Article  CAS  Google Scholar 

  31. Huttel W, Youssar L, Gruning BA, Gunther S, Hugentobler KG (2016) Echinocandin B biosynthesis: a biosynthetic cluster from Aspergillus nidulans NRRL 8112 and reassembly of the Subclusters Ecd and Hty from Aspergillus pachycristatus NRRL 11440 reveals a single coherent gene cluster. BMC Genom 17:8

    Article  Google Scholar 

  32. Cacho RA, Jiang W, Chooi YH, Walsh CT, Tang Y (2012) Identification and characterization of the Echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc 134(40):16781–16790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Panagiotou G, Kouskoumvekaki I, Jonsdottir SO, Olsson L (2007) Monitoring novel metabolic pathways using metabolomics and machine learning: induction of the phosphoketolase pathway in Aspergillus nidulans cultivations. Metabolomics 3(4):503–516

    Article  CAS  Google Scholar 

  34. Lautru S, Challis GL (2004) Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology-(UK) 150:1629–1636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of the National Key Research and Development Project of China (2022YFC2105400), Science and technology Project of Zhejiang Province (LGF22B060006).

Author information

Authors and Affiliations

Authors

Contributions

Z-QL and Y-GZ initiated and supervised the project; KN contributed to manuscript editing; Y-XQ conducted the experiments and data analysis; H-WC, Y-XY and X-TL participated in some of the experiments; H-YZ participated in the revision of the text. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zhi-Qiang Liu.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, K., Qi, YX., Cai, HW. et al. Investigation of the enhancement for Echinocandin B fermentation with methyl oleate from transcription level. Bioprocess Biosyst Eng 46, 1045–1052 (2023). https://doi.org/10.1007/s00449-023-02883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02883-4

Keywords

Navigation