Skip to main content
Log in

The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data generated and analysed during this study is available from the corresponding author on reasonable request.

Abbreviations

BCR:

Bubble column reactor

\({\varepsilon }_{G}\) :

Gas holdup

Ho :

Height of the liquid in the column before aeration

H:

Height of the liquid during steady-state aeration

HMO:

Hydrocarbon-metabolising organisms

H C :

Hydrocarbon concentration

M C :

Microbial concentration

STR:

Stirred tank reactor

U G :

Superficial gas velocity

References

  1. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385. https://doi.org/10.1111/j.1462-2920.2007.01458.x

    Article  CAS  PubMed  Google Scholar 

  2. Gandeepan P, Ackermann L (2018) Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4:199–222. https://doi.org/10.1016/j.chempr.2017.11.002

    Article  CAS  Google Scholar 

  3. Roudesly F, Oble J, Poli G (2017) Metal-catalyzed C[sbnd]H activation/functionalization: The fundamentals. J Mol Catal A: Chem 426:275–296. https://doi.org/10.1016/j.molcata.2016.06.020

    Article  CAS  Google Scholar 

  4. S.J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R.J. Lewis, K. Baldenius, S.S. Marais, D.J. Opperman, S.T.L. Harrison, M. Alcalde, M.S. Smit, G.J. Hutchings, A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2, Nature Communications. 10 (2019). https://doi.org/10.1038/s41467-019-12120-w.

  5. Rols J, Condoret J, Fonade C, Goma G (1990) Mecanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427–435

    Article  CAS  PubMed  Google Scholar 

  6. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. https://doi.org/10.1007/s00253-007-1119-1

    Article  CAS  PubMed  Google Scholar 

  7. Clarke KG, Correia LDC (2008) Oxygen transfer in hydrocarbon–aqueous dispersions and its applicability to alkane bioprocesses: a review. Biochem Eng J 39:405–429. https://doi.org/10.1016/j.bej.2007.11.020

    Article  CAS  Google Scholar 

  8. Shennan J, Levi J (1974) The growth of yeasts on hydrocarbons. Prog Ind Microbiol 13:1–57

    CAS  PubMed  Google Scholar 

  9. Smits THM, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomanas aeruginosa, Antonie van Leeuwenhoek, International Journal of General and Molecular. Microbiology 84:193–200. https://doi.org/10.1023/A:1026000622765

    Article  CAS  Google Scholar 

  10. Rojo F (2009) Degradation of alkanes by bacteria: minireview. Environ Microbiol 11:2477–2490. https://doi.org/10.1111/j.1462-2920.2009.01948.x

    Article  CAS  PubMed  Google Scholar 

  11. Greer CW, van Beilen JB, Labbe D, Smits THM, Whyte LG, Witholt B (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942. https://doi.org/10.1128/aem.68.12.5933-5942.2002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akihiro H, Kazuaki S, Shigeaki H (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753. https://doi.org/10.1046/j.1468-2920.2003.00468.x

    Article  Google Scholar 

  13. Wang W, Wang L, Shao Z (2010) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microb Ecol 60:429–439. https://doi.org/10.1007/s00248-010-9724-4

    Article  PubMed  Google Scholar 

  14. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182. https://doi.org/10.1038/nrmicro1348

    Article  CAS  PubMed  Google Scholar 

  15. Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of 4:141–147

    CAS  Google Scholar 

  16. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186. https://doi.org/10.1111/j.1462-2920.2006.01126.x

    Article  CAS  PubMed  Google Scholar 

  17. M.M. Yakimov, P.N. Golyshin, S. Lang, E.R.B. Moore, W.R. Abraham, H. Lünsdorf, K.N. Timmis, Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon- degrading and surfactant-producing marine bacterium, International Journal of Systematic Bacteriology. 48 (1998) 339–348. https://doi.org/10.1099/00207713-48-2-339.

  18. Naether DJ, Slawtschew S, Stasik S, Engel M, Olzog M, Wick LY, Timmis KN, Heipieper HJ (2013) Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach. Appl Environ Microbiol 79:4282–4293. https://doi.org/10.1128/AEM.00694-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Liu, Z. Shao, Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment, Int J Syst Evol Microbiol 55 (2005) 1181–1186. https://doi.org/10.1099/ijs.0.63443-0.

  20. Manilla-Pérez E, Lange AB, Hetzler S, Wältermann M, Kalscheuer R, Steinbüchel A (2010) Isolation and characterization of a mutant of the marine bacterium alcanivorax borkumensis sk2 defective in lipid biosynthesis. Appl Environ Microbiol 76:2884–2894. https://doi.org/10.1128/AEM.02832-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Liu, Y. Zheng, H. Lin, X. Wang, M. Li, Y. Liu, M. Yu, M. Zhao, N. Pedentchouk, D.J. Lea-Smith, J.D. Todd, C.R. Magill, W.J. Zhang, S. Zhou, D. Song, H. Zhong, Y. Xin, M. Yu, J. Tian, X.H. Zhang, Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench, Microbiome. 7 (2019). https://doi.org/10.1186/s40168-019-0652-3.

  22. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974. https://doi.org/10.1128/AEM.05402-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ayala M, Torres E (2004) Enzymatic activation of alkanes: constraints and prospective. Appl Catal A 272:1–13. https://doi.org/10.1016/j.apcata.2004.05.046

    Article  CAS  Google Scholar 

  24. Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242. https://doi.org/10.1111/j.1462-2920.2010.02165.x

    Article  CAS  PubMed  Google Scholar 

  25. S. Kochius, J. van Marwijk, A.C. Ebrecht, D.J. Opperman, M.S. Smit, Deconstruction of the CYP153a6 alkane hydroxylase system: Limitations and optimization of in vitro alkane hydroxylation, Catalysts. 8 (2018). https://doi.org/10.3390/catal8110531.

  26. Kawase Y, Halard B, Moo-Young M (1987) Theoretical prediction of volumetric mass transfer coefficients in bubble columns for Newtonian and non-Newtonian fluids. Chem Eng Sci 42:1609–1617. https://doi.org/10.1016/0009-2509(87)80165-3

    Article  CAS  Google Scholar 

  27. Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283. https://doi.org/10.1016/j.procbio.2004.10.004

    Article  CAS  Google Scholar 

  28. Rollbusch P, Bothe M, Becker M, Ludwig M, Grünewald M, Schlüter M, Franke R (2015) Bubble columns operated under industrially relevant conditions—Current understanding of design parameters. Chem Eng Sci 126:660–678. https://doi.org/10.1016/J.CES.2014.11.061

    Article  CAS  Google Scholar 

  29. Besagni G (2021) The effect of operating and design parameter on bubble column performance: the LOPROX case study. Chin J Chem Eng 40:48–52. https://doi.org/10.1016/j.cjche.2020.12.029

    Article  CAS  Google Scholar 

  30. Besagni G, Gallazzini L, Inzoli F (2017) On the scale-up criteria for bubble columns. Petroleum 5:1–9. https://doi.org/10.1016/j.petlm.2017.12.005

    Article  Google Scholar 

  31. Pishgar R, Kanda A, Gress GR, Gong H, Dominic JA, Tay JH (2018) Effect of aeration pattern and gas distribution during scale-up of bubble column reactor for aerobic granulation, Journal of Environmental. Chem Eng 6:6431–6443. https://doi.org/10.1016/j.jece.2018.10.006

    Article  CAS  Google Scholar 

  32. F. Ghoddosi, H. Golzar, F. Yazdian, K. Khosravi-Darani, E. Vasheghani-Farahani, Effect of carbon sources for PHB production in bubble column bioreactor: Emphasis on improvement of methane uptake, J Environ Chem Eng 7 (2019) 102978. https://doi.org/10.1016/j.jece.2019.102978.

  33. Yoon JH, Shin JH, Park TH (2008) Characterization of factors influencing the growth of Anabaena variabilis in a bubble column reactor. Biores Technol 99:1204–1210. https://doi.org/10.1016/j.biortech.2007.02.012

    Article  CAS  Google Scholar 

  34. Kumar K, Das D (2012) Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Biores Technol 116:307–313. https://doi.org/10.1016/j.biortech.2012.03.074

    Article  CAS  Google Scholar 

  35. Abufalgha AA, Clarke KG, Pott RWM (2019) The liquid-liquid homogeneity of a four phase simulated hydrocarbon-based bioprocess in a bubble column reactor. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5989

    Article  Google Scholar 

  36. A.A. Abufalgha, K.G. Clarke, R.W.M. Pott, Characterisation of bubble diameter and gas hold-up in simulated hydrocarbon-based bioprocesses in a bubble column reactor, Biochem Eng J. 158 (2020) 107577. https://doi.org/10.1016/j.bej.2020.107577.

  37. Abufalgha AA, Pott RWM, Cloete JC, Clarke KG (2020) Gas–liquid interfacial area and its influence on oxygen transfer coefficients in a simulated hydrocarbon bioprocess in a bubble column reactor. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6625

    Article  Google Scholar 

  38. Abufalgha AA, Pott RWM, Clarke KG (2021) Quantification of oxygen transfer coefficients in simulated hydrocarbon-based bioprocesses in a bubble column bioreactor, Bioprocess and Biosystems. Engineering 44:1913–1921. https://doi.org/10.1007/s00449-021-02571-1

    Article  CAS  Google Scholar 

  39. Denaro R, Giuliano L, Yakimov MM, Genovese M, Cappello S (2006) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microbiol Res 162:185–190. https://doi.org/10.1016/j.micres.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  40. S. Schugerl, Oxygen transfer into highly viscous media., Verfahrenstechnik. 4 (1980) 727–730. http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0018970646&partnerID=40&rel=R8.0.0.

  41. Dhanasekaran S, Karunanithi T (2012) Improved gas holdup in novel bubble column. Can J Chem Eng 90:126–136. https://doi.org/10.1002/cjce.20509

    Article  CAS  Google Scholar 

  42. Sharaf S, Zednikova M, Ruzicka MC, Azzopardi BJ (2016) Global and local hydrodynamics of bubble columns - Effect of gas distributor. Chem Eng J 288:489–504. https://doi.org/10.1016/j.cej.2015.11.106

    Article  CAS  Google Scholar 

  43. Jhawar AK, Prakash A (2011) Influence of bubble column diameter on local heat transfer and related hydrodynamics. Chem Eng Res Des 89:1996–2002. https://doi.org/10.1016/j.cherd.2010.11.019

    Article  CAS  Google Scholar 

  44. Li H, Prakash A, Margaritis A, Bergougnou MA (2003) Effects of micron-sized particles on hydrodynamics and local heat transfer in a slurry bubble column. Powder Technol 133:171–184. https://doi.org/10.1016/S0032-5910(03)00118-9

    Article  CAS  Google Scholar 

  45. Behkish A, Men Z, Inga JR, Morsi BI (2002) Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures. Chem Eng Sci 57:3307–3324. https://doi.org/10.1016/S0009-2509(02)00201-4

    Article  CAS  Google Scholar 

  46. Hollis PG, Clarke KG (2016) A systematic quantification and correlation of oxygen transfer coefficients and interfacial area in simulated model hydrocarbon-based bioprocesses in stirred tank reactors. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4897

    Article  Google Scholar 

  47. Clarke KG, Williams PC, Smit MS, Harrison STL (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem Eng J 28:237–242. https://doi.org/10.1016/j.bej.2005.11.007

    Article  CAS  Google Scholar 

  48. Correia LD, Clarke KG (2009) Measurement of the overall volumetric oxygen transfer coefficient in alkane-aqueous dispersions. J Chem Technol Biotechnol 84:1793–1797. https://doi.org/10.1002/jctb.2246

    Article  CAS  Google Scholar 

  49. Gakingo GK, Clarke KG, Louw TM (2020) A numerical investigation of the hydrodynamics and mass transfer in a three-phase gas-liquid-liquid stirred tank reactor. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107522

    Article  Google Scholar 

  50. Dejaloud A, Vahabzadeh F, Habibi A (2018) Hydrodynamics and oxygen transfer characterization in a net draft tube airlift reactor with water-in-diesel microemulsion. Fuel Process Technol 171:265–276. https://doi.org/10.1016/j.fuproc.2017.11.027

    Article  CAS  Google Scholar 

  51. Hyndman CL, Larachi F, Guy C (1997) Understanding gas-phase hydrodynamics in bubble columns: a convective model based on kinetic theory. Chem Eng Sci 52:63–77. https://doi.org/10.1016/S0009-2509(96)00387-9

    Article  CAS  Google Scholar 

  52. Prakash A, Margaitis A, Li H, Bergougnou MA (2001) Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochem Eng J 9:155–163. https://doi.org/10.1016/S1369-703X(01)00137-1

    Article  CAS  Google Scholar 

  53. Kazakis NA, Mouza AA, Paras SV (2008) Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale. Chem Eng Sci 63:5160–5178. https://doi.org/10.1016/j.ces.2008.07.006

    Article  CAS  Google Scholar 

  54. Chalupa J, Novák O, Halecký M, Bárta J, Kozliak E (2021) Thermophilic waste air treatment of n-alkanes in a two-phase bubble column reactor: the effect of silicone oil addition. J Chem Technol Biotechnol 96:1682–1690. https://doi.org/10.1002/jctb.6693

    Article  CAS  Google Scholar 

  55. S. Li, S. Huang, J. Fan, Effect of Surfactants on Gas Holdup in Shear-Thinning Fluids, International Journal of Chemical Engineering. 2017 (2017). https://doi.org/10.1155/2017/9062649.

  56. Besagni G, Inzoli F, De Guido G, Pellegrini LA (2017) The dual effect of viscosity on bubble column hydrodynamics. Chem Eng Sci 158:509–538. https://doi.org/10.1016/j.ces.2016.11.003

    Article  CAS  Google Scholar 

  57. De Swart JWA, van Vliet RE, Krishna R (1996) Size, structure and dynamics of “large” bubbles in a two-dimensional slurry bubble column. Chem Eng Sci 51:4619–4629. https://doi.org/10.1016/0009-2509(96)00265-5

    Article  Google Scholar 

  58. Krishna R, De Swart JWA, Ellenberger J, Martina GB, Maretto C (1997) Gas holdup in slurry bubble columns: effect of column diameter and slurry concentrations. AIChE J 43:311–316. https://doi.org/10.1002/aic.690430204

    Article  CAS  Google Scholar 

  59. Azgomi F, Gomez CO, Finch JA (2007) Correspondence of gas holdup and bubble size in presence of different frothers. Int J Miner Process 83:1–11. https://doi.org/10.1016/j.minpro.2007.03.002

    Article  CAS  Google Scholar 

  60. Leonard C, Ferrasse JH, Boutin O, Lefevre S, Viand A (2015) Bubble column reactors for high pressures and high temperatures operation. Inst Chem Eng. https://doi.org/10.1016/j.cherd.2015.05.013

    Article  Google Scholar 

  61. Maceiras R, Álvarez E, Cancela MA (2010) Experimental interfacial area measurements in a bubble column. Chem Eng J 163:331–336. https://doi.org/10.1016/j.cej.2010.08.011

    Article  CAS  Google Scholar 

  62. Letzel HMM, Schouten JCC, Krishna R, van den Bleek CMM (1999) Gas holdup and mass transfer in bubble column reactors operated at elevated pressure. Chem Eng Sci 54:2237–2246. https://doi.org/10.1016/S0009-2509(98)00418-7

    Article  CAS  Google Scholar 

  63. Besagni G, Brazzale P, Fiocca A, Inzoli F (2016) Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes. Flow Meas Instrum 52:190–207. https://doi.org/10.1016/j.flowmeasinst.2016.10.008

    Article  Google Scholar 

  64. Besagni G, Inzoli F (2016) Influence of internals on counter-current bubble column hydrodynamics: holdup, flow regime transition and local flow properties. Chem Eng Sci 145:162–180. https://doi.org/10.1016/j.ces.2016.02.019

    Article  CAS  Google Scholar 

  65. Besagni G, Deen NG (2019) Aspect ratio of bubbles in different liquid media: a novel correlation. Chem Eng Sci. https://doi.org/10.1016/j.ces.2019.115383

    Article  Google Scholar 

  66. Kim JY, Kim B, Nho NS, Go KS, Kim W, Bae JW, Jeong SW, Epstein N, Lee DH (2017) Gas holdup and hydrodynamic flow regime transition in bubble columns. J Ind Eng Chem 56:450–462. https://doi.org/10.1016/j.jiec.2017.07.043

    Article  CAS  Google Scholar 

  67. Clarke KG, Manyuchi MM (2012) Methodology for advanced measurement accuracy of the overall volumetric oxygen transfer coefficient with application to hydrocarbon-aqueous dispersions. J Chem Technol Biotechnol 87:1615–1618. https://doi.org/10.1002/jctb.3853

    Article  CAS  Google Scholar 

  68. T.H. Ngo, A. Schumpe, Oxygen absorption into stirred emulsions of n-alkanes, International Journal of Chemical Engineering. 2012 (2012). https://doi.org/10.1155/2012/265603.

  69. Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen-vectors. Biotechnol Adv 7:1–14. https://doi.org/10.1016/0734-9750(89)90900-2

    Article  CAS  PubMed  Google Scholar 

  70. A. Mandalenaki, N. Kalogerakis, E. Antoniou, Production of high purity biosurfactants using heavy oil residues as carbon source, Energies. 14 (2021). https://doi.org/10.3390/en14123557.

  71. J. Fernández-Martínez, M.J. Pujalte, J. García-Martínez, M. Mata, E. Garay, F. Rodríguez-Valera, Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax, International Journal of Systematic and Evolutionary Microbiology. 53 (2003) 331–338. https://doi.org/10.1099/ijs.0.01923-0.

  72. Sabirova JS, Becker A, Lünsdorf H, Nicaud JM, Timmis KN, Golyshin PN (2011) Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiol Lett 319:160–168. https://doi.org/10.1111/j.1574-6968.2011.02279.x

    Article  CAS  PubMed  Google Scholar 

  73. Abraham WR, Meyer H, Yakimov M (1998) Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis, Biochimica et Biophysica Acta—Lipids and Lipid. Metabolism 1393:57–62. https://doi.org/10.1016/S0005-2760(98)00058-7

    Article  CAS  Google Scholar 

  74. Barbato M, Scoma A, Mapelli F, De Smet R, Banat IM, Daffonchio D, Boon N, Borin S (2016) Hydrocarbonoclastic alcanivorax isolates exhibit different physiological and expression responses to N-dodecane. Front Microbiol 7:1–14. https://doi.org/10.3389/fmicb.2016.02056

    Article  Google Scholar 

  75. Duerr-Auster N, Gunde R, Mäder R, Windhab EJ (2009) Binary coalescence of gas bubbles in the presence of a non-ionic surfactant. J Colloid Interface Sci 333:579–584. https://doi.org/10.1016/j.jcis.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  76. Takagi S, Ogasawara T, Matsumoto Y (2008) The effects of surfactant on the multiscale structure of bubbly flows. Philosoph Trans R Soc A 366:2117–2129. https://doi.org/10.1098/rsta.2008.0023

    Article  CAS  Google Scholar 

  77. Tzounakos A, Karamanev DG, Margaritis A, Bergougnou MA (2004) Effect of the surfactant concentration on the rise of gas bubbles in power-law non-Newtonian liquids. Ind Eng Chem Res 43:5790–5795. https://doi.org/10.1021/ie049649t

    Article  CAS  Google Scholar 

  78. Gandhi AB, Joshi JB, Jayaraman VK, Kulkarni BD (2007) Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas–liquid systems. Chem Eng Sci 62:7078–7089. https://doi.org/10.1016/j.ces.2007.07.071

    Article  CAS  Google Scholar 

  79. Gandhi AB, Gupta PP, Joshi JB, Jayaraman VK, Kulkarni BD (2009) Development of unified correlations for volumetric mass-transfer coefficient and effective interfacial area in bubble column reactors for various gas-liquid systems using support vector regression. Ind Eng Chem Res 48:4216–4236. https://doi.org/10.1021/ie8003489

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work was performed in the School of Biological Sciences, University of East Anglia, the UK, and was supported by a University of East Anglia Global Challenges Research Fellowship. The remaining work was performed in the Department of Process Engineering, University of Stellenbosch, South Africa, and was financially supported by the Centre of Excellent in Catalysis (c*change), and Stellenbosch University. A. Curson and D. Lea-Smith acknowledge support from Human Frontier Science Program grant RGP0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. M. Pott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abufalgha, A.A., Curson, A.R.J., Lea-Smith, D.J. et al. The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess. Bioprocess Biosyst Eng 46, 635–644 (2023). https://doi.org/10.1007/s00449-023-02849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02849-6

Keywords

Navigation