Skip to main content
Log in

Protease-catalyzed synthesis of α-poly-L-Lysine and amphiphilic poly(L-lysine-co-L-phenylalanine) in a neat non-toxic organic solvent

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Subtilisin Carlsberg (alkaline protease from Bacillus licheniformis) catalyzes the syntheses of high molecular weights (ca. 20 KDa) cationic α-poly-L-lysine and amphiphilic poly(α-L-lysine-co-L-phenylalanine) in neat organic solvent. The synthesis is conducted in liquid 1,1,1,2-tetrafluoroethane solvent, which is a hydrophobic non-toxic gas that does not deplete the ozone layer and approved for pharmaceutical applications. Solubility of substrates and adequate protease activity in this system with low water environment limits the reaction of hydrolysis of the growing peptide chains. The pressurization of this organic compressed fluid to liquid has low-pressure requirements (25 bar, 40 ºC), and its complete evaporation at atmospheric pressure after completing the reaction ensures solvent-free residues in products. The resulting polypeptides present null cytotoxicity according to MTT and NR analyses, as well as Calcein/EthD-1 assay in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. https://doi.org/10.1038/nature02388

    Article  CAS  PubMed  Google Scholar 

  2. Zheng M, Pan M, Zhang W, Lin H, Wu S, Tang ChS, Liu D, Cai J (2021) Poly(a-L-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact mater 6:1878–1909. https://doi.org/10.1016/j.bioactmat.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Wang TT, Xia YY, Gao JQ, Xu DH, Han M (2021) Recent progress in the design and medical application of in situ self-assembled polypeptide materials. Pharmaceutics 13:753. https://doi.org/10.3390/pharmaceutics13050753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi Ch, He Y, Feng X, Fu D (2015) ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. J Biomater Sci Polym Ed 26:1343–1356. https://doi.org/10.1080/09205063.2015.1095023”

    Article  CAS  PubMed  Google Scholar 

  5. Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33:259–268. https://doi.org/10.1016/j.tibtech.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Song Z, Fu H, Wang R, Pacheco LA, Wang X, Lin Y, Cheng J (2018) Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Chem Soc Rev 47:7401–7425. https://doi.org/10.1039/C8CS00095F

    Article  CAS  PubMed  Google Scholar 

  7. Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: A 5 year update. Protein Sci 28:1412–1422. https://doi.org/10.1002/pro.3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsuchiya K, Numata K (2017) Chemoenzymatic synthesis of polypeptides for use as functional and structural materials. Macromol Biosci 17:1700177. https://doi.org/10.1002/mabi.201700177

    Article  CAS  Google Scholar 

  9. Mazorra-Manzano MA, Ramírez-Suarez JC, Yada RY (2018) Plant proteases for bioactive peptides release: a review. Crit Rev Food Sci Nutr 58:2147–2163. https://doi.org/10.1080/10408398.2017.1308312

    Article  CAS  PubMed  Google Scholar 

  10. Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F (2019) Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem 84:4615–4628. https://doi.org/10.1021/acs.joc.8b03001

    Article  CAS  PubMed  Google Scholar 

  11. Tsuchiya K, Numata K (2020) Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptide. Polym Chem 11:560–567. https://doi.org/10.1039/C9PY01335K

    Article  CAS  Google Scholar 

  12. Watanabe T, Terada K, Takemura S, Masunaga H, Tsuchiya K, Lamprou A, Numata K (2022) Chemoenzymatic polymerization of l-serine ethyl ester in aqueous media without side-group protection. ACS Polym Au 2:147–156. https://doi.org/10.1021/acspolymersau.1c00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamley IW, Castelletto V (2017) Self-assembly of peptide bioconjugates: selected recent research highlights. Bioconjugate Chem 28:731–739. https://doi.org/10.1021/acs.bioconjchem.6b00284

    Article  CAS  Google Scholar 

  14. Centore R, Totsingan F, Amason AC, Lyons S, Zha RH, Gross R (2020) Self-assembly assisted kinetically controlled papain catalyzed formation of mPEG-b-Phe(Leu)x. Biomacromol 21:493–507. https://doi.org/10.1021/acs.biomac.9b01237

    Article  CAS  Google Scholar 

  15. Aguirre-Díaz IS, Montiel C, Bustos-Jaimes I, Medina-Gonzalez Y, Tecante A, Gimeno M (2018) Chemoenzymatic synthesis of polypeptides in neat 1,1,1,2-tetrafluoroethane solvent. RSC Adv 8:35936–35945. https://doi.org/10.1039/c8ra06657d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romero-Montero A, Aguirre-Díaz IS, Puiggalí J, del Valle LJ, Gimeno M (2021) Self-assembly of supramolecular chemoenzymatic poly-l-phenylalanine. Polym Chem 12:1199–1209. https://doi.org/10.1039/d0py01659d

    Article  CAS  Google Scholar 

  17. Saul S, Corr S, Micklefield J (2004) Biotransformations in Low-Boiling hydrofluorocarbon Solvents. Angew Chem Int Ed 43:5519–5523. https://doi.org/10.1002/anie.200460082

    Article  CAS  Google Scholar 

  18. Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-L-lysine in the stretching NH mode range. Biophys Chem 125:166–171. https://doi.org/10.1016/j.bpc.2006.07.008

    Article  CAS  PubMed  Google Scholar 

  19. Shivu B, Seshadri S, Li J, Oberg KA, Uversky VN, Fink AL (2013) Distinct β-sheet structure in protein aggregates determined by ATR−FTIR spectroscopy. Biochemistry 52:5176–5183. https://doi.org/10.1021/bi400625v

    Article  CAS  PubMed  Google Scholar 

  20. Guan T, Li J, Chen Ch, Liu Y (2022) Self-assembling peptide-based hydrogels for wound tissue repair. Adv Sci 9:2104165. https://doi.org/10.1002/advs.20210416

    Article  CAS  Google Scholar 

  21. Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE (2021) Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: a review. Mater Sci Eng C 131:112489. https://doi.org/10.1016/j.msec.2021.112489

    Article  CAS  Google Scholar 

  22. Chen C, Hu J, Zeng P, Pan F, Yaseen M, Xu H, Lu J (2014) Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 35:1552–1561. https://doi.org/10.1016/j.biomaterials.2013.10.082

    Article  CAS  PubMed  Google Scholar 

  23. Dasgupta A, Das D (2019) Designer peptide amphiphiles: self-assembly to applications. Langmuir 35:10704–10724. https://doi.org/10.1021/acs.langmuir.9b01837

    Article  CAS  PubMed  Google Scholar 

  24. Sato K, Hendricks MP, Palmer LC, Stupp SI (2018) Peptide supramolecular materials for therapeutics. Chem Soc Rev 47:7539–7551. https://doi.org/10.1039/c7cs00735c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saji VS (2022) Supramolecular organic nanotubes for drug delivery. Mater Today Adv 14:100239. https://doi.org/10.1016/j.mtadv.2022.100239

    Article  CAS  Google Scholar 

  26. Li Y, Champion JA (2022) Self-assembling nanocarriers from engineered proteins: design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 189:114462. https://doi.org/10.1016/j.addr.2022.114462

    Article  CAS  PubMed  Google Scholar 

  27. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: infuence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131. https://doi.org/10.1016/s0142-9612(02)00445-3

    Article  CAS  PubMed  Google Scholar 

  28. Gad AE, Silver BL, Eytan GD (1982) Polycation-induced fusion of negatively-charged vesicles. Biochim Biophys Acta 690:124–132

    Article  CAS  PubMed  Google Scholar 

  29. Kadlecova Z, Baldi L, Hacker D, Wurm FM, Klok H-A (2012) Comparative study on the in vitro cytotoxicity of linear, dendritic, and hyperbranched polylysine analogues. Biomacromol 13:3127–3137. https://doi.org/10.1021/bm300930j

    Article  CAS  Google Scholar 

  30. Lee KW, An YJ, Lee J, Lee J-H, Yim H-S (2021) Amino Acids α-Poly-l-lysine functions as an adipogenic inducer in 3T3-L1 preadipocytes. Amino Acids 53:587–596. https://doi.org/10.1007/s00726-020-02932-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank CONACyT-Mexico for Postgraduate (AEG) and Postdoctoral (CHV) scholarships. MG thanks UNAM-DGAPA for funding project PAPIIT IN200123 and CONACyT for SEP-Frontera CF-2023-G-3. Authors would like to thank ENMEX SA de CV for the kind gift of SC sample, and Marisela Gutiérrez at USAII-FQ for FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Gimeno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1069 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinoza-González, Á., Hernández-Valencia, C., Cedeño-Caero, L. et al. Protease-catalyzed synthesis of α-poly-L-Lysine and amphiphilic poly(L-lysine-co-L-phenylalanine) in a neat non-toxic organic solvent. Bioprocess Biosyst Eng 46, 515–522 (2023). https://doi.org/10.1007/s00449-022-02836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02836-3

Keywords

Navigation