Skip to main content
Log in

Medium engineering of phenylethanoid transfructosylation catalysed by yeast β-fructofuranosidase

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Tyrosol and hydroxytyrosol, by-products of olive oil production, are valuable substrates for enzymatic transglycosylation that can provide products with pharmaceutical potential. Phenylethanoid fructosides are produced from sucrose and phenylethanoids by the catalytic action of β-fructofuranosidases. This work dealt with the potential of the most abundant β-fructofuranosidase, baker's yeast invertase, for this bioconversion. The effects of sucrose and phenylethanoid concentrations were investigated with a focus on the selectivity of phenylethanoid transfructosylation and fructoside yields. For this purpose, initial rate and progress curve experiments were carried out for the initial (hydroxy)tyrosol and sucrose concentrations of 0.072–0.3 M and 1–2 M, respectively. Reaction courses exhibited either a maximum or plateau of fructoside yield in the range of about 10–18%. The addition of deep eutectic solvents was applied in the concentration range from 5 to 70% (v/v) to investigate the possibility of shifting the reaction equilibrium towards fructoside synthesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ma GP, Zheng Q, Xu MB et al (2018) Rhodiola rosea L. improves learning and memory function: preclinical evidence and possible mechanisms. Front Pharmacol 9:1415. https://doi.org/10.3389/fphar.2018.01415

    Article  CAS  Google Scholar 

  2. Karković Marković A, Torić J, Barbarić M, Jakobušić Brala C (2019) Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 24:1–39. https://doi.org/10.3390/molecules24102001

    Article  CAS  Google Scholar 

  3. Emma MR, Augello G, di Stefano V et al (2021) Potential uses of olive oil secoiridoids for the prevention and treatment of cancer: a narrative review of preclinical studies. Int J Mol Sci 22:1–22. https://doi.org/10.3390/ijms22031234

    Article  CAS  Google Scholar 

  4. Pedan V, Popp M, Rohn S et al (2019) Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules. https://doi.org/10.3390/molecules24112041

    Article  Google Scholar 

  5. Horvathova E, Mastihubova M, Karnisova Potocka E et al (2019) Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2019.104646

    Article  Google Scholar 

  6. Kis P, Horváthová E, Gálová E et al (2021) Synthesis of tyrosol and hydroxytyrosol glycofuranosides and their biochemical and biological activities in cell-free and cellular assays. Molecules. https://doi.org/10.3390/molecules26247607

    Article  Google Scholar 

  7. Akita H, Kawahara E, Kishida M, Kato K (2006) Synthesis of naturally occurring β-d-glucopyranoside based on enzymatic β-glycosidation. J Mol Catal B Enzym 40:8–15. https://doi.org/10.1016/j.molcatb.2006.01.031

    Article  CAS  Google Scholar 

  8. Potocká E, Mastihubová M, Mastihuba V (2015) Enzymatic synthesis of tyrosol glycosides. J Mol Catal B Enzym 113:23–28. https://doi.org/10.1016/j.molcatb.2014.12.017

    Article  CAS  Google Scholar 

  9. Wang F, Huang D, Ma Y et al (2019) Preparation of salidroside with n -butyl β -D-glucoside as the glycone donor via a two-step enzymatic synthesis catalyzed by immobilized β -glucosidase from bitter almonds. Biocatal Biotransform 37:246–260. https://doi.org/10.1080/10242422.2018.1549236

    Article  CAS  Google Scholar 

  10. Bi Y, Wang Z, Mao Y et al (2012) Ionic liquid effects on the activity of β-glycosidase for the synthesis of salidroside in co-solvent systems. Chin J Catal 33:1161–1165. https://doi.org/10.1016/S1872-2067(11)60395-1

    Article  CAS  Google Scholar 

  11. Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17:481–493. https://doi.org/10.1016/j.phymed.2010.02.002

    Article  CAS  Google Scholar 

  12. Qi T, Gu G, Xu L et al (2017) Efficient synthesis of tyrosol galactosides by the β-galactosidase from Enterobacter cloacae B5. Appl Microbiol Biotechnol 101:4995–5003. https://doi.org/10.1007/s00253-017-8249-x

    Article  CAS  Google Scholar 

  13. Hollá V, Hill R, Antošová M, Polakovič M (2021) Design of immobilized biocatalyst and optimal conditions for tyrosol β-galactoside production. Bioprocess Biosyst Eng 44:93–101. https://doi.org/10.1007/s00449-020-02425-2

    Article  CAS  Google Scholar 

  14. Karnišová Potocká E, Mastihubová M, Mastihuba V (2019) Enzymatic synthesis of tyrosol and hydroxytyrosol β-d-fructofuranosides. Biocatal Biotransform 37:18–24. https://doi.org/10.1080/10242422.2017.1423060

    Article  CAS  Google Scholar 

  15. Hollá V, Antošová M, Karkeszová K et al (2019) Screening of commercial enzymes for transfructosylation of tyrosol: effect of process conditions and reaction network. Biotechnol J. https://doi.org/10.1002/biot.201800571

    Article  Google Scholar 

  16. Karnišová Potocká E, Mastihubová M, Mastihuba V (2021) Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem. https://doi.org/10.1016/j.foodchem.2020.127674

    Article  Google Scholar 

  17. Toledo LET, García DM, Cruz EP, et al (2018) Fructosyltransferases and invertases: useful enzymes in the food and feed industries. In: Kuddus M (ed) Enzymes in food biotechnology: production, applications, and future prospects. Elsevier, pp 451–469

  18. Antošová M, Polakovič M (2001) Fructosyltransferases: the enzymes catalyzing production. Chem Pap 55:350–358

    Google Scholar 

  19. Straathof AJJ, Kieboom APG, van Bekkum H (1986) Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydr Res 146:154–159. https://doi.org/10.1016/0008-6215(86)85033-9

    Article  CAS  Google Scholar 

  20. Vega-Paulino RJ, Zúniga-Hansen ME (2012) Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J Mol Catal B Enzym 76:44–51. https://doi.org/10.1016/j.molcatb.2011.12.007

    Article  CAS  Google Scholar 

  21. Marín-Navarro J, Talens-Perales D, Polaina J (2015) One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Appl Microbiol Biotechnol 99:2549–2555. https://doi.org/10.1007/s00253-014-6312-4

    Article  CAS  Google Scholar 

  22. Ganaie MA, Gupta US, Kango N (2013) Screening of biocatalysts for transformation of sucrose to fructooligosaccharides. J Mol Catal B Enzym 97:12–17. https://doi.org/10.1016/j.molcatb.2013.07.008

    Article  CAS  Google Scholar 

  23. Lafraya Á, Sanz-Aparicio J, Polaina J, Marín-Navarro J (2011) Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl Environ Microbiol 77:6148–6157. https://doi.org/10.1128/AEM.05032-11

    Article  CAS  Google Scholar 

  24. Breuer HJ, Bacon JSD (1957) Sucrose formation by Taka-diastase: action of the enzyme on methyl β-fructofuranoside and raffinose. Biochem J 66:462–468. https://doi.org/10.1042/bj0660462

    Article  CAS  Google Scholar 

  25. Baseer A, Shall S (1971) The enzymic synthesis of fructosides using purified external β-fructosidase from Saccharomyces cerevisiae. Int J Biochem 2:503–506. https://doi.org/10.1016/0020-711X(71)90019-X

    Article  CAS  Google Scholar 

  26. Straathof AJJ, Vrijenhoef JP, Sprangers EPAT et al (1988) Enzymic formation of β-D-fructofuranosides from sucrose: activity and selectivity of invertase in mixtures of water and alcohol. J Carbohydr Chem 7:223–238. https://doi.org/10.1080/07328308808058916

    Article  CAS  Google Scholar 

  27. Selisko B, Ulbrich R, Schellenberger A, Müller U (1990) Invertase-catalyzed reactions in alcoholic solutions. Biotechnol Bioeng 35:1006–1010. https://doi.org/10.1002/bit.260351008

    Article  CAS  Google Scholar 

  28. Rodríguez M, Gómez A, González F et al (1996) Selectivity of methyl-fructoside synthesis with β-fructofuranosidase. Appl Biochem Biotechnol 59:167–175. https://doi.org/10.1007/BF02787818

    Article  Google Scholar 

  29. Abdul Manas NH, Md. Illias R, Mahadi NM (2018) Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol 38:272–293. https://doi.org/10.1080/07388551.2017.1339664

    Article  CAS  Google Scholar 

  30. Panić M, Cvjetko Bubalo M, Radojčić Redovniković I (2021) Designing a biocatalytic process involving deep eutectic solvents. J Chem Technol Biotechnol 96:14–30. https://doi.org/10.1002/jctb.6545

    Article  CAS  Google Scholar 

  31. Kist JA, Zhao H, Mitchell-Koch KR, Baker GA (2021) The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 9:536–566. https://doi.org/10.1039/d0tb01656j

    Article  CAS  Google Scholar 

  32. Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ (2021) β-glucosidase from Streptomyces griseus: ester hydrolysis and alkyl glucoside synthesis in the presence of Deep Eutectic Solvents. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.crgsc.2021.100129

    Article  Google Scholar 

  33. Delavault A, Grüninger J, Kapp D et al (2022) Enzymatic synthesis of alkyl glucosides by β-glucosidases in a 2-in-1 deep eutectic solvent system. Chem Ing Tech 94:417–426. https://doi.org/10.1002/cite.202100150

    Article  CAS  Google Scholar 

  34. Cheng QB, Zhang LW (2017) Highly efficient enzymatic preparation of daidzein in deep eutectic solvents. Molecules. https://doi.org/10.3390/molecules22010186

    Article  Google Scholar 

  35. Hoppe J, Drozd R, Byzia E, Smiglak M (2019) Deep eutectic solvents based on choline cation—physicochemical properties and influence on enzymatic reaction with β-galactosidase. Int J Biol Macromol 136:296–304. https://doi.org/10.1016/j.ijbiomac.2019.06.027

    Article  CAS  Google Scholar 

  36. Attya M, Benabdelkamel H, Perri E, Russo A, Sindona G (2010) Effects of conventional heating on the stability of major olive oil phenolic compounds by tandem mass spectrometry and isotope dilution assay. Molecules 15:8734–8746. https://doi.org/10.3390/molecules15128734

    Article  CAS  Google Scholar 

  37. Zafra-Gómez A, Luzón-Toro B, Capel-Cuevas S, Carlos-Morales J (2011) Stability of hydroxytyrosol in aqueous solutions at different concentration, temperature and with different ionic content: a study using UPLC-MS. Food Nutr Sci 2:1114–1120. https://doi.org/10.4236/fns.2011.210149

    Article  CAS  Google Scholar 

  38. Farine S, Versluis C, Bonnici PJ et al (2001) Application of high performance anion exchange chromatography to study invertase-catalysed hydrolysis of sucrose and formation of intermediate fructan products. Appl Microbiol Biotechnol 55:55–60. https://doi.org/10.1007/s002530000493

    Article  CAS  Google Scholar 

  39. Bowski L, Saini R, Ryu DY, Vieth WR (1971) Kinetic modeling of the hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656. https://doi.org/10.1002/bit.260130505

    Article  CAS  Google Scholar 

  40. Nelson JM, Schubert MP (1928) Water concentration and the rate of hydrolysis of sucrose by invertase. J Am Chem Soc 50:2189–2193. https://doi.org/10.1021/ja01395a017

    Article  Google Scholar 

  41. Shearwin KE, Winzor DJ (1988) Substrate as a source of thermodynamic nonideality in enzyme kinetic studies: invertase-catalyzed hydrolysis of sucrose. Arch Biochem Biophys 260:532–539. https://doi.org/10.1016/0003-9861(88)90478-X

    Article  CAS  Google Scholar 

  42. Antošová M, Illeová V, Vandáková M et al (2008) Chromatographic separation and kinetic properties of fructosyltransferase from Aureobasidium pullulans. J Biotechnol 135:58–63. https://doi.org/10.1016/j.jbiotec.2008.02.016

    Article  CAS  Google Scholar 

  43. Polakovič M, Báleš V, Dluhý M, Štefuca V (1993) Bioprocess engineering optimization of a packed bed bioreactor with immobilized cells using experimental design. Bioprocess Eng 9:225–230. https://doi.org/10.1007/BF00369406

    Article  Google Scholar 

  44. Valerio SG, Alves JS, Klein MP et al (2013) High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr Polym 92:462–468. https://doi.org/10.1016/j.carbpol.2012.09.001

    Article  CAS  Google Scholar 

  45. Méndez-Líter JA, Tundidor I, Nieto-Domínguez M et al (2019) Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microb Cell Fact 18:1–12. https://doi.org/10.1186/s12934-019-1147-4

    Article  CAS  Google Scholar 

  46. Gabriele F, Chiarini M, Germani R et al (2019) Effect of water addition on choline chloride/glycol deep eutectic solvents: characterization of their structural and physicochemical properties. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111301

    Article  Google Scholar 

  47. Míguez N, Ramírez-Escudero M, Gimeno-Pérez M et al (2018) Fructosylation of hydroxytyrosol by the β-fructofuranosidase from Xanthophyllomyces dendrorhous: insights into the molecular basis of the enzyme specificity. ChemCatChem 10:4878–4887. https://doi.org/10.1002/cctc.201801171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Slovak Research and Development Agency (Grant No. APVV-18-0188) and the Slovak Grant Agency for Science (Grant No. VEGA 1/0515/22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Polakovič.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

No ethical issues are related to the conducted research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkeszová, K., Antošová, M., Potocká, E.K. et al. Medium engineering of phenylethanoid transfructosylation catalysed by yeast β-fructofuranosidase. Bioprocess Biosyst Eng 46, 237–249 (2023). https://doi.org/10.1007/s00449-022-02828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02828-3

Keywords

Navigation