Skip to main content
Log in

Enantioselective resolution of (R,S)-DMPM to prepare (R)-DMPM by an adsorbed-covalent crosslinked esterase PAE07 from Pseudochrobactrum asaccharolyticum WZZ003

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

(R)-N-(2,6-dimethylphenyl) aminopropionic acid methyl ester ((R)-DMPM) is an important chiral intermediate of the fungicide N-(2,6-Dimethylphenyl)-N-(methoxyacetyl)-alanine methyl ester ((R)-Metalaxyl). In this study, (1) D3520 (macroporous acrylic anion resin), selected from the ten resins, was used to immobilize the esterase from Pseudochrobactrum asaccharolyticum WZZ003 (PAE07) for resoluting the (R,S)-DMPM to obtain (R)-DMPM. (2) Up to 20 g/L PAE07 could be immobilized onto D3520 with a high enzymatic activity of 32.4 U/g. Moreover, the Km and Vmax values of 19.1 mM and 2.8 mM/min for D3520-immobilized PAE07 indicated its high activity and stereoselectivity. (3) The optimal temperature and pH for the immobilized PAE07 were 40 ℃ and 8.0, and substrate concentration was up to 0.35 M. After 15 h reaction, the conversion rate from (R,S)-DMPM to (R)-DMPM was 48.0% and the e.e.p and E values were 99.5% and 1393.0, respectively. In scale-up resolution, 200 g/L substrate and 12.5 g immobilized esterase PAE07 condition, a conversion rate from substrate to product of 48.1% and a product e.e.p of 98% were obtained within 12 h, with the activity of immobilized PAE07 retained 80.2% after 5 cycles of reactions. These results indicated that the D3520-immobilized esterase PAE07 had great potential for enzymatic resolution of (R,S)-DMPM to prepare (R)-Metalaxyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Monkiedje A, Ilori MO, Spiteller M (2002) Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biol Biochem 34:1939–1948

    Article  CAS  Google Scholar 

  2. Martins MR, Santos C, Pereira P, Cruz-Morais J, Lima N (2017) Metalaxyl degradation by Mucorales strains Gongronella sp and Rhizopus oryzae. Molecules 22(12):2225

  3. Celis R, Gamiz B, Adelino MA, Cornejo J, Hermosin MC (2015) Effect of formulation and repeated applications on the enantioselectivity of metalaxyl dissipation and leaching in soil. Pest Manag Sci 71:1572–1581

    Article  CAS  Google Scholar 

  4. Yue H, Fang S, Zhang YZ, Ning Y, Yu WS, Kong FY, Qiu J (2016) Enantioselective effects of metalaxyl on soil enzyme activity. Chirality 28:771–777

    Article  CAS  Google Scholar 

  5. Park OJ, Lee SH (2005) Stereoselective lipases from Burkholderia sp., cloning and - their application to preparation of methyl (R)-N-(2,6-dimethylphenyl)alaninate, a key intermediate for (R)-metalaxyl. J Biotechnol 120:174–182

    Article  CAS  Google Scholar 

  6. Li K, Wang JH, He YJ, Abdulrazaq MA, Yan YJ (2018) Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J Biotechnol 281:87–98

    Article  CAS  Google Scholar 

  7. Ye L, Liu X, Shen GH, Li SS, Luo QY, Wu HJ, Chen AJ, Liu XY, Li ML, Pu B, Qin W, Zhang ZQ (2019) Properties comparison between free and immobilized wheat esterase using glass fiber film. Int J Biol Macromol 125:87–91

    Article  CAS  Google Scholar 

  8. Zhang YJ, Chen CS, Liu HT, Chen JL, Xia Y, Wu SJ (2019) Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate. Biotechnol Lett 41:1223–1232

    Article  CAS  Google Scholar 

  9. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. Fems Microbiol Rev 26:73–81

    Article  CAS  Google Scholar 

  10. Castro FF, Pinheiro ABP, Gerhardt ECM, Oliveira MAS, Barbosa-Tessmann IP (2018) Production, purification, and characterization of a novel serine-esterase from Aspergillus westerdijkiae. J Basic Microbiol 58:131–143

    Article  CAS  Google Scholar 

  11. Chen PT, Liu CH, Chen YT, Hsu FY, Shaw JF (2020) Isolation, expression and characterization of the thermophilic recombinant esterase from geobacillus thermodenitrificans PS01. Appl Biochem Biotech 191:112–124

    Article  CAS  Google Scholar 

  12. Park JM, Kang CH, Won SM, Oh KH, Yoon JH (2020) Characterization of a novel moderately thermophilic solvent-tolerant esterase isolated from a compost metagenome library. Front Microbiol 10:3069

  13. Torres S, Martinez MA, Pandey A, Castro GR (2009) An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. Bioresource Technol 100:896–902

    Article  CAS  Google Scholar 

  14. Lima GV, da Silva MR, de Sousa FT, de Lima LB, de Oliveira MdCF, de Lemos TLG, Zampieri D, dos Santos JCS, Rios NS, Gonçalves LRB, Molinari F, de Mattos MC (2017) Chemoenzymatic synthesis of (S)-Pindolol using lipases. Appl Catal A 546:7–14

    Article  CAS  Google Scholar 

  15. Moreira KD, de Oliveira ALB, de Moura LS, de Sousa IG, Cavalcante ALG, Neto FS, Valerio RBR, Chaves AV, Fonseca TD, Cruz DMV, Lima GV, de Oliveira GP, de Souza MCM, Fechine PBA, de Mattos MC, da Fonseca AM, dos Santos JCS (2022) Taguchi design-assisted co-immobilization of lipase A and B from Candida antarctica onto chitosan: characterization, kinetic resolution application, and docking studies. Chem Eng Res Des 177:223–244

    Article  Google Scholar 

  16. Lima PJM, da Silva RM, Neto C, Gomes ESNC, Souza J, Nunes YL, Sousa Dos Santos JC (2021) An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 1-25. https://doi.org/10.1002/bab.2098

  17. Francisco Thálysson Tavares C, Aluisio Marques da F, Jeferson Yves Nunes Holanda A, José CSdS (2022) A stepwise docking and molecular dynamics approach for enzymatic biolubricant production using Lipase Eversa® Transform as a biocatalyst. Ind Crops Prod 187:115450

  18. Fernandez-Lopez L, Bartolome-Cabrero R, Rodriguez MD, Dos Santos CS, Rueda N, Fernandez-Lafuente R (2015) Stabilizing effects of cations on lipases depend on the immobilization protocol. Rsc Adv 5:83868–83875

    Article  CAS  Google Scholar 

  19. Rios NS, Neto DMA, Dos Santos JCS, Fechine PBA, Fernandez-Lafuente R, Goncalves LRB (2019) Comparison of the immobilization of lipase from Pseudomonas fluorescens on divinylsulfone or p-benzoquinone activated support. Int J Biol Macromol 134:936–945

    Article  CAS  Google Scholar 

  20. Cheng F, Cheng FF, Zheng JY, Wu GZ, Zhang YJ, Wang Z (2018) A Novel esterase from Pseudochrobactrum asaccharolyticum WZZ003: enzymatic properties toward model substrate and catalytic performance in chiral fungicide intermediate synthesis. Process Biochem 69:92–98

    Article  CAS  Google Scholar 

  21. Liu D-M, Dong C (2020) Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem 92:464–475

    Article  Google Scholar 

  22. Boros Z, Weiser D, Markus M, Abahazioya E, Magyar A, Tomin A, Koczka B, Kovacs P, Poppe L (2013) Hydrophobic adsorption and covalent immobilization of Candida antarctica lipase B on mixed-function-grafted silica gel supports for continuous-flow biotransformations. Process Biochem 48:1039–1047

    Article  CAS  Google Scholar 

  23. Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva MK, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, dos Santos JCS (2021) Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: how to choose the best strategy? Int J Biol Macromol 181:1124–1170

    Article  CAS  Google Scholar 

  24. Zahirinejad S, Hemmati R, Homaei A, Dinari A, Hosseinkhani S, Mohammadi S, Vianello F (2021) Nano-organic supports for enzyme immobilization: scopes and perspectives. Colloids Surf, B 204:111774

    Article  CAS  Google Scholar 

  25. Matsumoto T, Yamada R, Ogino H (2019) Chemical treatments for modification and immobilization to improve the solvent-stability of lipase. World J Microb Biot 35(12):193

  26. Fernandez-Lafuente R, Armisen P, Sabuquillo P, Fernandez-Lorente G, Guisan JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids 93:185–197

    Article  CAS  Google Scholar 

  27. Goncalves D, Silva AG, Guidini CZ (2019) Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biot 103:7399–7423

    Article  Google Scholar 

  28. Zhang J, Cui H, Xue J, Wang W, Wang W, Le T, Chen L, Engelhardt UH, Jiang H (2021) Adsorption equilibrium and thermodynamics of tea theasinensins on HP20—a high-efficiency macroporous adsorption resin. Foods 10(12):2971

  29. Liu D, Chen Z, Long J, Zhao Y, Du X (2018) Immobilization of penicillin acylase on macroporous adsorption resin CLX1180 carrier. Adv Polym Technol 37:753–760

  30. Musdzalifah M, Fahrurrozi M, Sediawan WB, Susanti DY (2022) Separation of proanthocyanidin from red sorghum seed extract using macroporous resin. IOP Conference Series: Earth and Environmental science 963: 012043 (012045) 012043 (012045 pp.)

  31. Shen N, Liu Y, Cui Y, Xin H (2022) Large-scale targetedly isolation of biflavonoids with high purity from industrial waste Ginkgo biloba exocarp using two-dimensional chromatography coupled with macroporous adsorption resin enrichment. Ind Crops Prod 175:114264

  32. Zhang Y, Fan Y, Zhang W, Wu G, Wang J, Cheng F, Zheng J, Wang Z (2018) Bio-preparation of (R)-DMPM using whole cells of Pseudochrobactrum asaccharolyticum WZZ003 and its application on kilogram-scale synthesis of fungicide (R)-Metalaxyl. Biotechnol Prog 34:921–928

    Article  Google Scholar 

  33. Cai HY, Li Y, Zhao MJ, Fu GW, Lai J, Feng FQ (2015) Immobilization, regiospecificity characterization and application of aspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1,3-Dioleoyl-2-Palmitoylglycerol. Plos One 10(7):e0133857

  34. No DS, Zhao T, Lee J, Lee JS, Kim IH (2013) Synthesis of phytosteryl ester containing pinolenic acid in a solvent-free system using immobilized candida rugosa lipase. J Agr Food Chem 61:8934–8940

    Article  CAS  Google Scholar 

  35. Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

    Article  CAS  Google Scholar 

  36. Lian WS, Li DM, Zhang L, Wang WF, Faiza M, Tan CP, Yang B, Lan DM, Wang YH (2018) Synthesis of conjugated linoleic acid-rich triacylglycerols by immobilized mutant lipase with excellent capability and recyclability. Enzyme Microb Tech 117:56–63

    Article  CAS  Google Scholar 

  37. de Oliveira PC, Alves GM, de Castro HF (2000) Immobilisation studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer. Biochem Eng J 5:63–71

    Article  Google Scholar 

  38. SreeHarsha N, Ghorpade RV, Alzahrani AM, Al-Dhubiab BE, Venugopala KN (2019) Immobilization studies of Candida Antarctica lipase B on gallic acid resin-grafted magnetic iron oxide nanoparticles. Int J Nanomed 14:3235–3244

    Article  CAS  Google Scholar 

  39. Okobira T, Matsuo A, Matsumoto H, Tanaka T, Kai K, Minari C, Goto M, Kawakita H, Uezu K (2015) Enhancement of immobilized lipase activity by design of polymer brushes on a hollow fiber membrane. J Biosci Bioeng 120:257–262

    Article  CAS  Google Scholar 

  40. Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  41. Srivastava P, Kaira G, Kapoor M (2017) Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-β-1,4-mannanase: improved activity, stability and reusability. Int J Biol Macromol 105:1289–1299

  42. Souza LTD, Moreno-Perez S, Lorente GF, Cipolatti EP, de Oliveira D, Resende RR, Pessela BC (2017) Immobilization of Moniliella spathulata R25L270 lipase on ionic, hydrophobic and covalent supports: functional properties and hydrolysis of sardine oil. Molecules 22(10):1508

  43. Netto CGCM, da Silva DG, Toma SH, Andrade LH, Nakamura M, Araki K, Toma HE (2016) Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis (vol 6, pg 12977, 2016). Rsc Adv 6:51246–51246

    Article  Google Scholar 

  44. Cipiciani A, Bellezza F, Fringuelli F, Silvestrini MG (2001) Influence of pH and temperature on the enantioselectivity of propan-2-ol-treated Candida rugosa lipase in the kinetic resolution of (+/-)-4-acetoxy- 2,2 -paracyclophane. Tetrahedron-Asymmetry 12:2277–2281

    Article  CAS  Google Scholar 

  45. Sanchez A, Cruz J, Rueda N, dos Santos JCS, Torres R, Ortiz C, Villalonga R, Fernandez-Lafuente R (2016) Inactivation of immobilized trypsin under dissimilar conditions produces trypsin molecules with different structures. RSC Adv 6:27329–27334

    Article  CAS  Google Scholar 

  46. Braham SA, Hussain F, Morellon-Sterling R, Kamal S, Kornecki JF, Barbosa O, Kati DE, Fernandez-Lafuente R (2019) Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: enzyme stabilization and improved proteolytic activity. Biotechnol Prog 35:e2768

  47. Chong SL, Cardoso V, Bras JLA, Gomes MZD, Fontes CMGA, Olsson L (2019) Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. Bioresour Technol 293:122009

  48. Yemul O, Imae T (2005) Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability. Biomacromol 6:2809–2814

    Article  CAS  Google Scholar 

  49. Yao CY, Lin WJ, Yue KL, Ling XP, Jing KJ, Lu YH, Tang SK, Fan EG (2017) Biocatalytic synthesis of vitamin A palmitate using immobilized lipase produced by recombinant Pichia pastoris. Eng Life Sci 17:768–774

    Article  CAS  Google Scholar 

  50. Zhong WC, Zhang MJ, Li XJ, Zhang YJ, Wang Z, Zheng JY (2020) Enantioselective resolution of (R, S)-2-Phenoxy-Propionic acid methyl ester by covalent immobilized lipase from Aspergillus oryzae. Appl Biochem Biotech 190:1049–1059

    Article  CAS  Google Scholar 

  51. Reed MC, Lieb A, Nijhout HF (2010) The biological significance of substrate inhibition: a mechanism with diverse functions. BioEssays 32:422–429

    Article  CAS  Google Scholar 

  52. Lu Y, Zhang Z, Zhang L, Lu Y (2016) Cloning and expression of an esterase gene from a new strain capable of enantioselective hydrolyzing methyl (R, S)-N-(2,6-dimethylphenyl) alaninate. Wei Sheng Wu Xue Bao 56:1335–1347

    CAS  Google Scholar 

  53. Park OJ, Lee SH, Park TY, Chung WG, Lee SW (2006) Development of a scalable process for a key intermediate of (R)-metalaxyl by enzymatic kinetic resolution. Org Process Res Dev 10:588–591

    Article  CAS  Google Scholar 

  54. Torabizadeh H, Tavakoli M, Safari M (2014) Immobilization of thermostable α-amylase from Bacillus licheniformis by cross-linked enzyme aggregates method using calcium and sodium ions as additives. J Mol Catal B Enzym 108:13–20

    Article  CAS  Google Scholar 

  55. Liu N, Fu M, Wang Y, Zhao QZ, Sun WZ, Zhao MM (2012) Immobilization of LecitaseA (R) ultra onto a novel polystyrene DA-201 resin: characterization and biochemical properties. Appl Biochem Biotech 168:1108–1120

    Article  CAS  Google Scholar 

  56. Hou C, Zhu H, Wu DM, Li YJ, Hou K, Jiang Y, Li YF (2014) Immobilized lipase on macroporous polystyrene modified by PAMAM-dendrimer and their enzymatic hydrolysis. Process Biochem 49:244–249

    Article  CAS  Google Scholar 

  57. Pinheiro MP, Rios NS, Fonseca TdS, Bezerra FdA, Rodriguez-Castellon E, Fernandez-Lafuente R, de Mattos MC, dos Santos JCS, Goncalves LRB (2018) Kinetic resolution of drug intermediates catalyzed by lipase B from Candida Antarctica immobilized on immobead-350. Biotechnol Prog 34:878–889

    Article  CAS  Google Scholar 

  58. Galvao WS, Pinheiro BB, Golcalves LRB, de Mattos MC, Fonseca TS, Regis T, Zampieri D, dos Santos JCS, Costa LS, Correa MA, Bohn F, Fechine PBA (2018) Novel nanohybrid biocatalyst: application in the kinetic resolution of secondary alcohols. J Mater Sci 53:14121–14137

    Article  CAS  Google Scholar 

  59. Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Tech 71:53–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for Zhejiang Provincial Natural Science Foundation (LY18B020021) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y-JZ: conceptualization, methodology, formal analysis, funding acquisition, investigation, writing-review and editing. L-TW: methodology, validation, formal analysis. M-PZ: methodology, validation, formal analysis, writing-original draft, visualization. CW: methodology, writing-review and editing, project administration. X-JY: conceptualization, writing-review and editing, project administration, supervision.

Corresponding authors

Correspondence to Chun Wei or Xin-Jun Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Wei, LT., Zhou, MP. et al. Enantioselective resolution of (R,S)-DMPM to prepare (R)-DMPM by an adsorbed-covalent crosslinked esterase PAE07 from Pseudochrobactrum asaccharolyticum WZZ003. Bioprocess Biosyst Eng 46, 171–181 (2023). https://doi.org/10.1007/s00449-022-02821-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02821-w

Keywords

Navigation