Skip to main content
Log in

Dynamic modeling and parameter estimation of biomethane production from microalgae co-digestion

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work proposes a dynamic modeling procedure applied to biomethane production from microalgae residual co-digestion. A two-stage anaerobic digestion representation is selected, considering acidogenesis and methanogenesis as main reaction pathways. Based on the experimental database generated in the University of Mons Laboratories, several candidate models, assuming the presence or absence of biomass dynamics, are suggested, and parametric structural and local identifiability studies are performed. An original parameter estimation procedure is applied to a data-set partition used for model direct validation. The remaining experiment data are dedicated to cross-validation. The results point out how these dynamic models may serve as advanced monitoring software tools such as digital twins, even in the presence of incomplete process data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B :

Cumulative biogas production volume

\({B_\textrm{f}}\) :

Final biogas production volume

\(\mathrm {CO_2}\) :

Carbon dioxide

\(\textrm{CO}\) :

Carbon monoxide

\(\mathrm {CH_4}\) :

Methane

\(\mathrm {H_2S}\) :

Hydrogen sulfide

\(\mathrm {NH_3}\) :

Ammonia

\(\textrm{TOC}\) :

Total organic carbon (\(\%\))

\(\textrm{TC}\) :

Total carbon (\(\%\))

\(\textrm{TIC}\) :

Total inorganic carbon (\(\%\))

\(\mathrm {NH_4^+}\) :

Ammonium cation

\(\textrm{NaOH}\) :

Sodium Hydroxide

\(\mathrm {Na^+}\) :

Sodium ion

\(\mathrm {H^+}\) :

Hydrogen ion

\(\textrm{TKN}\) :

Total Kjeldahl nitrogen

\(\mathrm {C_{NaOH}}\) :

Concentration of sodium hydroxide (mol/L)

TS:

Total solids (\(\%\))

VS:

Volatile solids (\(\%\))

VFA:

Volatile fatty acids

LCFA:

Long-chain fatty acids

C/N ratio:

Carbon over nitrogen ratio

RSD:

Relative standard deviation

I/S ratio:

Inoculum to substrate ratio

\({m_\textrm{I}}\) :

Weight of inoculum (g)

\({m_\textrm{S}}\) :

Weight of substrate (g)

\({m_\mathrm{{liq}}}\) :

Weight of liquid (g)

\(\mathrm {N_2}\) :

Nitrogen

GC:

Gas chromatography

TCD:

Thermal conductivity detector

\({V_\textrm{S}}\) :

Volume of produced biogas from the substrate (mL)

\({V_\textrm{B}}\) :

Volume of produced biogas from the inoculum (mL)

\({m_\mathrm{{I,S}}}\) :

Weight of inoculum in substrate assays

\({m_\mathrm{{I,B}}}\) :

Weight of inoculum in blank assays

\({m_\mathrm{{S,S}}}\) :

Weight of substrate in substrate assays

BVS:

Biodegradable volatile solids

\({S_i}\) :

ith Substrate concentration

\({X_i}\) :

ith Biomass concentration

\({\xi }\) :

State variable (or species) concentration vector

\({K_1}\) :

Stoichiometric matrix of the liquid components

\({K_2}\) :

Stoichiometric matrix of the gas components

\({k_i}\) :

ith Stoichiometric coefficient

r :

Reaction rate vector

\({Q_i}\) :

Gaseous output flow rate of component i

\({\mu _{i}}\) :

Specific rate of reaction i

\({\mu _{\mathrm{{max}},i}}\) :

Maximum specific rate of reaction i (constant)

\({K_{\textrm{S}_i}}\) :

Monod half-saturation constant related to the ith substrate intake

\({k_{\textrm{d},i}}\) :

ith Biomass decay rate

\({\%_i}\) :

Volumetric percentage of gas component i

\({Q_\mathrm{{exp}}}\) :

Gas flow rate measured data

\({Q_\mathrm{{model}}}\) :

Gas flow rate estimated by the model

\({\theta }\) :

Parameter vector

\({n_\textrm{S}}\) :

Number of samples during one experiment

M :

Total number of samples over the considered experiments

\({\Sigma }\) :

Covariance matrix of the measurement errors

y :

System measurement vector

u :

System input vector

\({\Re _{n}}\) :

n-Dimensional real number space

IC:

Parameter initial condition (or guess)

\({T_\mathrm{{SS}}}\) :

Total suspended solids

FIM:

Fisher Information Matrix

P :

Covariance matrix of the estimation error

\({\sigma }\) :

Scalar a posteriori estimation of the measurement error variance

\({I_\textrm{n}}\) :

Identity matrix of dimension n

J :

Cost function

\({\lambda _\textrm{f}}\) :

Weight applied to the final VS value penalty

\({\lambda _\textrm{var}}\) :

Weight applied to the biomass variance penalty

References

  1. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors, vol 1. Elsevier, Amsterdam

  2. Bellu G, Saccomani MP, Audoly S, D’Angiò L (2007) Daisy: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Progr Biomed 88(1):52–61. https://doi.org/10.1016/j.cmpb.2007.07.002

    Article  Google Scholar 

  3. Bernard O, Hadj-Sadok Z, Dochain D, Genovesi A, Steyer JP (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75(4):424–438. https://doi.org/10.1002/bit.10036

    Article  CAS  Google Scholar 

  4. Béteau J, Otton V, Hihn J, Delpech F, Chéruy A (2005) Modelling of anaerobic digestion in a fluidised bed with a view to control. Biochem Eng J 24(3):255–267. https://doi.org/10.1016/j.bej.2004.06.010

    Article  CAS  Google Scholar 

  5. BP p. (2019) BP statistical review of world energy 2019. Technical report, London

  6. Chappell MJ, Godfrey KR (1992) Structural identifiability of the parameters of a nonlinear batch reactor model. Math Biosci 108(2):241–251. https://doi.org/10.1016/0025-5564(92)90058-5

    Article  CAS  Google Scholar 

  7. Chen Z, Wang L, Qiu S, Ge S (2018) Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Res Int 2018

  8. Dewasme L, Côte F, Filee P, Hantson AL, Vande Wouwer A (2017) Macroscopic dynamic modeling of sequential batch cultures of hybridoma cells: an experimental validation. Bioengineering. https://doi.org/10.3390/bioengineering4010017

    Article  Google Scholar 

  9. Dewasme L, Sbarciog M, Rocha-Cózatl E, Haugen F, Wouwer AV (2019) State and unknown input estimation of an anaerobic digestion reactor with experimental validation. Control Eng Pract 85:280–289

    Article  Google Scholar 

  10. Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45(17):5347–5364. https://doi.org/10.1016/j.watres.2011.08.059

    Article  CAS  Google Scholar 

  11. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168(4265):167. https://doi.org/10.1038/168167a0

    Article  CAS  Google Scholar 

  12. El-Mashad HM (2013) Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresour Technol 132:305–312. https://doi.org/10.1016/j.biortech.2012.12.183

    Article  CAS  Google Scholar 

  13. Escudié R, Conte T, Steyer JP, Delgenès JP (2005) Hydrodynamic and biokinetic models of an anaerobic fixed-bed reactor. Process Biochem 40(7):2311–2323. https://doi.org/10.1016/j.procbio.2004.09.004

    Article  CAS  Google Scholar 

  14. Feudjio Letchindjio CG, Dewasme L, Vande Wouwer A (2021) An experimental application of extremum seeking control to cultures of the microalgae scenedesmus obliquus in a continuous photobioreactor. Int J Adapt Control Signal Process 35(7):1285–1297

    Article  Google Scholar 

  15. Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond Ser A 222(594–604):309–368

    Google Scholar 

  16. Haugen F, Bakke R, Lie B (2014) State estimation and model-based control of a pilot anaerobic digestion reactor. J Control Sci Eng 2014

  17. Herrmann C, Kalita N, Wall D, Xia A, Murphy JD (2016) Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresour Technol 214:328–337. https://doi.org/10.1016/j.biortech.2016.04.119

    Article  CAS  Google Scholar 

  18. Hess J (2007) Modélisation de la qualité du biogaz produit par un fermenteur méthanogène et stratégie de régulation en vue de sa valorisation. Ph.D. thesis, Université Nice Sophia Antipolis

  19. Hill D (1983) Simplified monod kinetics of methane fermentation of animal wastes. Agric Wastes 5(1):1–16. https://doi.org/10.1016/0141-4607(83)90009-4

    Article  CAS  Google Scholar 

  20. Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, De Wilde V, Ebertseder F, Fernández B, Ficara E, Fotidis I, Frigon JC, De Laclos HF, Ghasimi DS, Hack G, Hartel M, Heerenklage J, Horvath IS, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Pfund FR, Strömberg S, Torrijos M, Van Eekert M, Van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74(11):2515–2522. https://doi.org/10.2166/wst.2016.336

    Article  CAS  Google Scholar 

  21. Jiang B, Tsao R, Li Y, Miao M (2014) Food safety: food analysis technologies/techniques. In: Encyclopedia of agriculture and food systems, vol 3. Elsevier Inc., pp 273–288. https://doi.org/10.1016/B978-0-444-52512-3.00052-8

  22. Nielsen SS (2010) Phenol-sulfuric acid method for total carbohydrates. In: Food analysis laboratory manual, pp 47–53. Springer

  23. Owhondah RO, Walker M, Ma L, Nimmo B, Ingham DB, Poggio D, Pourkashanian M (2016) Assessment and parameter identification of simplified models to describe the kinetics of semi-continuous biomethane production from anaerobic digestion of green and food waste. Bioprocess Biosyst Eng 39(6):977–992. https://doi.org/10.1007/s00449-016-1577-x

    Article  CAS  Google Scholar 

  24. Pitt RE, Cross TL, Pell AN, Schofield P, Doane PH (1999) Use of in vitro gas production models in ruminal kinetics. Math Biosci 159(2):145–163. https://doi.org/10.1016/S0025-5564(99)00020-6

    Article  CAS  Google Scholar 

  25. Rao CR (1992) Information and the accuracy attainable in the estimation of statistical parameters. In: Breakthroughs in statistics, pp 235–247. Springer

  26. Raposo F, Fernández-Cegrí V, de la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86(8):1088–1098. https://doi.org/10.1002/jctb.2622

    Article  CAS  Google Scholar 

  27. Ritt JF (1950) Differential algebra, vol 33. American Mathematical Society (1950)

  28. Rozzi A (1984) Modelling and control of anaerobic digestion processes. Trans Inst Meas Control 6(3):153–159. https://doi.org/10.1177/014233128400600306

    Article  Google Scholar 

  29. Safi C, Charton M, Pignolet O, Silvestre F, Vaca-Garcia C, Pontalier PY (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol 25(2):523–529. https://doi.org/10.1007/s10811-012-9886-1

    Article  CAS  Google Scholar 

  30. Solé-Bundó M, Passos F, Romero-Güiza MS, Ferrer I, Astals S (2019) Co-digestion strategies to enhance microalgae anaerobic digestion: a review. Renew Sustain Energy Rev 112(January):471–482. https://doi.org/10.1016/j.rser.2019.05.036

  31. Strömberg S, Nistor M, Liu J (2014) Towards eliminating systematic errors caused by the experimental conditions in biochemical methane potential (BMP) tests. Waste Manag 34(11):1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018

    Article  Google Scholar 

  32. Velázquez-Martí B, Meneses-Quelal O, Gaibor-Chavez J, Niño-Ruiz Z (2018) Review of mathematical models for the anaerobic digestion process. Anaerob Dig i. https://doi.org/10.5772/intechopen.80815

  33. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. https://doi.org/10.1016/j.cej.2016.04.118

Download references

Acknowledgements

This research is part of the AlgoTech project (convention 1510612-Algotech) supported by the Walloon Region (DGO6). The authors also thank Hana Berriche for her participation to the experimental sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dewasme.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrotin, A., Hantson, AL. & Dewasme, L. Dynamic modeling and parameter estimation of biomethane production from microalgae co-digestion. Bioprocess Biosyst Eng 46, 129–146 (2023). https://doi.org/10.1007/s00449-022-02818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02818-5

Keywords

Navigation