Skip to main content
Log in

Optical and biological properties of MgO/ZnO nanocomposite derived via eggshell membrane: a bio-waste approach

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel synthesis of MgO/ZnO nanocomposite using a template, namely an eggshell membrane (ESM) was attempted. The nanocomposite was characterized by XRD, UV–visible, FTIR, Raman, DLS (zeta potential and particle size distribution), FESEM with EDX, and HRTEM analysis. The presence of periclase cubic MgO (space group Fm3m) and hexagonal wurtzite ZnO (space group P63mc) structures was verified by the XRD results. The average crystallite size of the MgO/ZnO nanocomposite was equal to 9.43 nm. The nanocomposite exhibited an on-set of absorbance close to 300 nm. From the taucs plot, the bandgap of the composite was calculated, and it was equal to 3.63 eV. The FTIR spectrum of the composite showed Mg–O stretching vibration at 455 cm−1 and that of Zn–O at 564 cm−1. The zeta potential and the particle size distribution of the nanocomposite were equal to − 35.5 mV and 176.1 nm. The FESEM images of the nanocomposite appeared as an aggregated honeycomb with a cubic and hexagonal structure. The EDX analysis showed the presence of Mg (23.65 atom%), Zn (27.95 atom%), and O (48.40 atom%). The antibacterial and antifungal activities of the nanocomposite were investigated using the agar-well diffusion method. The antibacterial activity exhibited the highest zone of inhibition for Bacillus subtilis (25 ± 0.41 mm) and Shigella dysenteria (25 ± 0.19 mm), whereas the antifungal activity showed the highest zone of inhibition for Aspergillus terrus (27 ± 0.25 mm). The MIC value of the nanocomposite was equal to 9.37 (µg/mL) for all the bacteria. Hence, it is verified that the present MgO/ZnO nanocomposite could very well be used to treat bacterial and fungal infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

This article includes the raw and processed data used to produce the results of the study.

References

  1. He H, Yang P (2018) CeO2/NiO nanostructures created using eggshell membrane towards enhanced catalytic activity. J Nanosci Nanotechnol 18:340–346. https://doi.org/10.1166/jnn.2018.14598

    Article  CAS  Google Scholar 

  2. He X, Yang D-P, Zhang X, Liu M, Kang Z, Lin C, Ji N, Luque R (2019) Waste eggshell membrane-templated CuO–ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem Eng J 369:621–633. https://doi.org/10.1016/j.cej.2019.03.047

    Article  CAS  Google Scholar 

  3. Wang Qi, Ma C, Tang J, Zhang C, Ma L (2018) Eggshell membrane-templated MnO2 nanoparticles: facile synthesis and tetracycline hydrochloride decontamination. Nanoscale Res Lett 13:255. https://doi.org/10.1186/s11671-018-2679-y

    Article  CAS  Google Scholar 

  4. Celina Selvakumari J, Nishanthi ST, Dhanalakshmi J, Ahila M, PathinettamPadiyan D (2018) Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl Surf Sci 441:530–537. https://doi.org/10.1016/j.apsusc.2018.02.043

    Article  CAS  Google Scholar 

  5. Dong Q, Huilan S, Zhang D, Zhu N, Guo X (2006) Biotemplate directed assembly of porous SnO2 nanoparticles into tubular hierarchical structures. Scr Mater 55(9):799–802. https://doi.org/10.1016/j.scriptamat.2006.07.012

    Article  CAS  Google Scholar 

  6. Fan S, Zhao M, Ding L, Liang J, Chen J, Li Y, Chen S (2016) Synthesis of 3D hierarchical porous Co3O4 film by egg shell membrane for non-enzymatic glucose detection. J Electroanal Chem 775:52–57. https://doi.org/10.1016/j.jelechem.2016.05.035

    Article  CAS  Google Scholar 

  7. Camaratta R, Correia-Lima AN, Reyes MD, Hernández Fenollosa MA, Orozco-Messana J, Bergmann CP (2013) Microstructural evolution and optical properties of TiO2 synthesized by eggshell membrane templating for DSSCs application. Mater Res Bull 48(4):1569–1574

    Article  CAS  Google Scholar 

  8. Dong Q, Su H, Xu J, Zhang D, Wang R (2007) Synthesis of biomorphic ZnO interwoven microfibers using eggshell membrane as the biotemplate. Mater Lett 61(13):2714–2717. https://doi.org/10.1016/j.matlet.2006.06.091

    Article  CAS  Google Scholar 

  9. Song N, Jiang H, Cui T, Chang L, Wang X (2012) Synthesis and enhanced gas-sensing properties of mesoporous hierarchical α-Fe2O3 architectures from an eggshell membrane. Micro Nano Lett 7(9):943–946. https://doi.org/10.1049/mnl.2012.0631

    Article  CAS  Google Scholar 

  10. Sundara Selvam PS, Chinnadurai GS, Ganesan D et al (2020) Cadmium oxide–zinc oxide nanocomposites synthesized using waste eggshell membrane and its in-vitro assessments of the antimicrobial activities and minimum inhibitory concentration. J Inorg Organomet Polym 31:816–835. https://doi.org/10.1007/s10904-020-01688-2

    Article  CAS  Google Scholar 

  11. Sundara Selvam PS, Chinnadurai GS, Ganesan D et al (2020) Eggshell membrane-mediated V2O5/ZnO nanocomposite: synthesis, characterization, antibacterial activity, minimum inhibitory concentration, and its mechanism. Appl Phys A 126:893. https://doi.org/10.1007/s00339-020-04076-2

    Article  CAS  Google Scholar 

  12. PrashannaSuvaitha S, Sridhar P, Divya T, Palani P, Venkatachalam K (2022) Bio-waste eggshell membrane assisted synthesis of NiO/ZnO ternary nanocomposite and its characterization: evaluation of antibacterial and antifungal activity. Inorg Chim Acta 536:120892. https://doi.org/10.1016/j.ica.2022.120892

    Article  CAS  Google Scholar 

  13. Lad UD, Kokode NS, Deore MB, Tupe UJ (2021) MgO incorporated ZnO nanostructured binary oxide thin film ethanol gas sensor. IJSDR 6(1):135–142

    Google Scholar 

  14. Mirhosseini M, Afzali M (2016) Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control 68:208–215. https://doi.org/10.1016/j.foodcont.2016.03.048

    Article  CAS  Google Scholar 

  15. Karacabey P, Döven S, Uzunoğlu D et al (2019) Synthesis of 3D hierarchical flower-like MgO microstructure: investigation of its adsorption and antibacterial properties. Arab J Sci Eng 44:9951–9964. https://doi.org/10.1007/s13369-019-03959-8

    Article  CAS  Google Scholar 

  16. Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S (2019) Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgO NPs) using aqueous extract of Sargassum wightii. Jpb 190:86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014

    Article  CAS  Google Scholar 

  17. Abed C, Ali MB, Addad A, Elhouichet H (2019) Growth, structural and optical properties of ZnO–MgO–MgO nanocomposites and their photocatalytic activity under sunlight irradiation. Mater Res Bull 110:230–238. https://doi.org/10.1016/j.materresbull.2018.10.041

    Article  CAS  Google Scholar 

  18. Evstropiev SK, Soshnikov IP, Kolobkova EV, Evstropyev KS, Nikonorov NV, Khrebtov AI, Dukelskii KV, Kotlyar KP, Oreshkina KV, Nashekin AV (2018) Polymer-salt synthesis and characterization of MgO–ZnO ceramic coatings with the high transparency in UV spectral range. Opt Mater 82:81–89. https://doi.org/10.1016/j.optmat.2018.05.029

    Article  CAS  Google Scholar 

  19. Maruthai J, Muthukumarasamy A, Baskaran B (2018) Optical, biological and catalytic properties of ZnO/MgO nanocomposites derived via Musa paradisiaca bract extract. Ceram Int 44(11):13152–13160. https://doi.org/10.1016/j.ceramint.2018.04.138

    Article  CAS  Google Scholar 

  20. Fernandez AS, Del Carmen De la Rosa García SC, Gomez-Villalba LS, Gomez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS Appl Mater Interfaces 9(29):24873–24886. https://doi.org/10.1021/acsami.7b06130

    Article  CAS  Google Scholar 

  21. Sangeeta M, Karthik KV, Ravishankar R, Anantharaju KS, Nagabhushana H, Jeetendra K, Vidyae YS, Renuka L (2017) Synthesis of ZnO, MgO and ZnO/MgO by solution combustion method: characterization and photocatalytic studies. Mater Today Proc 4(11):11791–11798. https://doi.org/10.1016/j.matpr.2017.09.096

    Article  Google Scholar 

  22. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2018) Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Jpb 190:8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001

    Article  CAS  Google Scholar 

  23. Moradi S, Sobhgol SA, Hayati F, Isari AA, Kakavandi B, Bashardoust P, Anvaripour B (2020) Performance and reaction mechanism of MgO/ZnO/graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep Purif Technol 251(15):117373. https://doi.org/10.1016/j.seppur.2020.117373

    Article  CAS  Google Scholar 

  24. Akram MW, Fakhar-e-Alam M, Butt AR, Munir T, Ali A, Alimgeer KS, Mehmood-ur-Rehman K, Iqbal S, Ali S, Ikram M, Amin N, Wang ZM (2018) Magnesium oxide in nanodimension: model for MRI and multimodal therapy. J Nanomater. https://doi.org/10.1155/2018/4210920

    Article  Google Scholar 

  25. Nigam A, Saini S, Rai AK, Pawar SJ (2021) Structural, optical, cytotoxicity, and antimicrobial properties of MgO, ZnO and MgO/ZnO nanocomposite for biomedical applications. Ceram Int 47(14):19515–19525. https://doi.org/10.1016/j.ceramint.2021.03.28

    Article  CAS  Google Scholar 

  26. Panchal P, Paul DR, Sharma A, Hooda D, Yadav R, Meena P, Nehra SP (2019) Phytoextract mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities. J Photochem Photobiol A Chem 385:112049. https://doi.org/10.1016/j.jphotochem.2019.112049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank financial support from RUSA 2.0, India (Ref No. C3/RI&QI/RUSA 2.0/Theme-2 Project/Award/2021/032 dt.: 03.02.2021), University of Madras.

Author information

Authors and Affiliations

Authors

Contributions

SPS—conceptualization; methodology; formal analysis; investigation; writing original draft preparation; writing-review and editing. TD—investigation; methodology. PS—investigation; methodology. PP—providing lab facilities for testing antibacterial and antifungal activity. KV—visualization; supervision and writing-review.

Corresponding author

Correspondence to K. Venkatachalam.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

There are no studies involving human participants or animals in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanna Suvaitha, S., Divya, T., Sridhar, P. et al. Optical and biological properties of MgO/ZnO nanocomposite derived via eggshell membrane: a bio-waste approach. Bioprocess Biosyst Eng 46, 39–51 (2023). https://doi.org/10.1007/s00449-022-02811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02811-y

Keywords

Navigation