Skip to main content
Log in

Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, an amino-functionalized ionic liquid-modified magnetic chitosan (MACS-NIL) containing 2,2-diamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) was used as a carrier, and dialdehyde starch (DAS) was used as a cross-linking agent to covalently immobilize laccase (MACS-NIL-DAS-lac), which realized the co-immobilization of laccase and ABTS. The carrier was characterized by Fourier infrared transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction analysis, electron paramagnetic resonance, etc. The immobilization efficiency and activity retention of MACS-NIL-DAS-lac could reach 76.7% and 69.8%, respectively. At the same time, its pH stability, thermal stability, and storage stability had been significantly improved. In the organic pollutant removal performance test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MACS-NIL-DAS-lac (1 U) could reach 100% within 6 h, and the removal efficiency could still reach 88.6% after six catalytic runs. In addition, MACS-NIL-DAS-lac also showed excellent degradation ability for other conventional phenolic pollutants and polycyclic aromatic hydrocarbons. The research results showed that MACS-NIL-DAS fabricated by the combination inorganic material, organic biomacromolecules, ionic liquid, and electron mediator could be used as a novel carrier for laccase immobilization and the immobilized laccase showed excellent removal efficiency for organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haritash AK, Kaushik CP (2009) Kaushik, Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. https://doi.org/10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  2. Zhou W, Zhang W, Cai Y (2021) Laccase immobilization for water purification: A comprehensive review. Chem Eng J 403:126272. https://doi.org/10.1016/j.cej.2020.126272

    Article  CAS  Google Scholar 

  3. Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83(10):1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  4. Couto SR, Herrera JLT (2006) Industrial and biotechnological applications of laccases: A review. Biotechnol Adv 24(5):500–513. https://doi.org/10.1016/j.biotechadv.2006.04.003

    Article  CAS  Google Scholar 

  5. Mahmoodi NM, Taghizadeh A, Taghizadeh M, Abdi J (2019) In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. J Hazard Mater 378:120741. https://doi.org/10.1016/j.jhazmat.2019.06.018

    Article  CAS  PubMed  Google Scholar 

  6. Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B 46(1):1–15. https://doi.org/10.1016/s0926-3373(03)00228-5

    Article  CAS  Google Scholar 

  7. Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24(6):281–287. https://doi.org/10.1016/j.tibtech.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  8. Singh J, Saharan V, Kumar S, Gulati P, Kapoor RK (2018) Laccase grafted membranes for advanced water filtration systems: a green approach to water purification technology. Crit Rev Biotechnol 38(6):883–901. https://doi.org/10.1080/07388551.2017.1417234

    Article  CAS  PubMed  Google Scholar 

  9. Riva S (2013) Laccases: blue enzymes for green chemistry. FEBS J 280:590–590. https://doi.org/10.1016/j.tibtech.2006.03.006

    Article  CAS  Google Scholar 

  10. Jiang YJ, Wang Q, He Y, Zhou LY, Gao J (2014) Co-aggregation of laccase and nature egg white: a simple method to prepare stable and recyclable biocatalyst. Appl Biochem Biotechnol 172(5):2496–2506. https://doi.org/10.1007/s12010-013-0697-x

    Article  CAS  PubMed  Google Scholar 

  11. Altinkaynak C, Tavlasoglu S, Ozdemir N, Ocsoy I (2016) A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol 93–94:105–112. https://doi.org/10.1016/j.enzmictec.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  12. Alvarado-Ramirez L, Rostro-Alanis M, Rodriguez-Rodriguez J, Castillo-Zacarias C, Sosa-Hernandez JE, Barcelo D, Iqbal HMN, Parra-Saldivar R (2021) Exploring current tendencies in techniques and materials for immobilization of laccases-A review. Int J Biol Macromol 181:683–696. https://doi.org/10.1016/j.ijbiomac.2021.03.175

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Gao J, Xin X, Wang LH, Li HY, Zheng XB, Jiang YJ (2020) Immobilization laccase on heterophase TiO2 microsphere as a photo-enzyme integrated catalyst for emerging contaminants degradation under visible light. Appl Mater Today 21:100810. https://doi.org/10.1016/j.apmt.2020.100810

    Article  Google Scholar 

  14. Bilal M, Zhao YP, Rasheed T, Iqbal HMN (2018) Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int J Biol Macromol 120:2530–2544. https://doi.org/10.1016/j.ijbiomac.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  15. Zheng MM, Wang S, Xiang X, Shi J, Huang J, Deng QC, Huang FH, Xiao JY (2017) Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes. Food Chem 228:476–483. https://doi.org/10.1016/j.foodchem.2017.01.129

    Article  CAS  PubMed  Google Scholar 

  16. Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW (2015) Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Biol Macromol 75:44–50. https://doi.org/10.1016/j.ijbiomac.2015.01.020

    Article  CAS  PubMed  Google Scholar 

  17. Zhang K, Yang WZ, Liu Y, Zhang KG, Chen Y, Yin XS (2020) Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 1220:128769. https://doi.org/10.1016/j.molstruc.2020.128769

    Article  CAS  Google Scholar 

  18. Xiang XR, Ding S, Suo HB, Xu C, Gao Z, Hu Y (2018) Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr Polym 182:245–253. https://doi.org/10.1016/j.carbpol.2017.11.031

    Article  CAS  PubMed  Google Scholar 

  19. Qiu X, Qin J, Xu M, Kang LF, Hu Y (2019) Organic-inorganic nanocomposites fabricated via functional ionic liquid as the bridging agent for Laccase immobilization and its application in 2,4-dichlorophenol removal. Colloids Surfac B Biointerfaces 179:260–269. https://doi.org/10.1016/j.colsurfb.2019.04.002

    Article  CAS  Google Scholar 

  20. Suo HB, Xu LL, Xu C, Qu X, Chen HY, Huang H, Hu Y (2019) Graphene oxide nanosheets shielding of lipase immobilized on magnetic composites for the improvement of enzyme stability. ACS Sustain Chem Eng 7(4):4486–4494. https://doi.org/10.1021/acssuschemeng.8b06542

    Article  CAS  Google Scholar 

  21. Sojitra UV, Nadar SS, Rathod VK (2017) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 157:677–685. https://doi.org/10.1016/j.carbpol.2016.10.018

    Article  CAS  PubMed  Google Scholar 

  22. Lu WS, Shen YH, Xie AJ, Zhang WQ (2013) Preparation and Protein Immobilization of Magnetic Dialdehyde Starch Nanoparticles. J Phys Chem B 117(14):3720–3725. https://doi.org/10.1021/jp3110908

    Article  CAS  PubMed  Google Scholar 

  23. Tang RP, Du YM, Fan LH (2003) Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. J Polym Sci Part B Polym Phys 41(9):993–997. https://doi.org/10.1002/polb.10405

    Article  CAS  Google Scholar 

  24. Qiu X, Wang Y, Xue Y, Li WX, Hu Y (2020) Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem Eng J 391:123564. https://doi.org/10.1016/j.cej.2019.123564

    Article  CAS  Google Scholar 

  25. Feng YP, Shen MY, Wang Z, Liu GG (2019) Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. Ecotoxicol Environ Saf 183:109555. https://doi.org/10.1016/j.ecoenv.2019.109555

    Article  CAS  PubMed  Google Scholar 

  26. Gu YH, Xue P, Jia F, Shi KR (2019) Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. J Hazard Mater 365:118–124. https://doi.org/10.1016/j.jhazmat.2018.10.076

    Article  CAS  Google Scholar 

  27. Xue P, Liu XP, Gu YH, Zhang WW, Ma L, Li R (2020) Laccase-mediator system assembling co-immobilized onto functionalized calcium alginate beads and its high-efficiency catalytic degradation for acridine. Colloids Surf B Biointerfaces 196:111348. https://doi.org/10.1016/j.colsurfb.2020.111348

    Article  CAS  PubMed  Google Scholar 

  28. Suo HB, Gao Z, Xu LL, Xu C, Yu DH, Xiang XR, Huang H, Hu Y (2019) Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization. Mater Sci Eng C Mater Biol Appl 96:356–364. https://doi.org/10.1016/j.msec.2018.11.041

    Article  CAS  PubMed  Google Scholar 

  29. Suo HB, Xu LL, Xu C, Chen HY, Yu DH, Gao Z, Huang H, Hu Y (2018) Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O(4)-Chitosan nanocomposites. Int J Biol Macromol 119:624–632. https://doi.org/10.1016/j.ijbiomac.2018.07.187

    Article  CAS  PubMed  Google Scholar 

  30. Chao C, Liu JD, Wang JT, Zhang YW, Zhang B, Zhang YT, Xiang X, Chen RF (2013) Surface modification of halloysite nanotubes with dopamine for enzyme immobilization. ACS Appl Mater Interfaces 5(21):10559–10564. https://doi.org/10.1021/am4022973

    Article  CAS  PubMed  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  32. Zou B, Hu Y, Cui FJ, Jiang L, Yu DH, Huang H (2014) Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J Colloid Interface Sci 417:210–216. https://doi.org/10.1016/j.jcis.2013.11.029

    Article  CAS  PubMed  Google Scholar 

  33. Chen C, Sun W, Lv HY, Li H, Wang YB, Wang P (2018) Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment, Chem. Eng J 350:949–959. https://doi.org/10.1016/j.cej.2018.06.008

    Article  CAS  Google Scholar 

  34. Nguyen XS, Zhang GK, Yang XF (2017) Mesocrystalline Zn-Doped Fe3O4 hollow submicrospheres: formation mechanism and enhanced photo-fenton catalytic performance. Acs Appl Mater Interfaces 9(10):8900–8909. https://doi.org/10.1021/acsami.6b16839

    Article  CAS  PubMed  Google Scholar 

  35. Chen M, Xu P, Zeng GM, Yang CP, Huang DL, Zhang JC (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol Adv 33(6):745–755. https://doi.org/10.1016/j.biotechadv.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  36. Zappi D, Masci G, Sadun C, Tortolini C, Antonelli ML, Bollella P (2018) Evaluation of new cholinium-amino acids based room temperature ionic liquids (RTILs) as immobilization matrix for electrochemical biosensor development: Proof-of-concept with Trametes Versicolor laccase. Microchem J 141:346–352. https://doi.org/10.1016/j.microc.2018.05.045

    Article  CAS  Google Scholar 

  37. De Diego T, Manjon A, Lozano P, Vaultier M, Iborra JL (2011) An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chem 13(2):444–451. https://doi.org/10.1039/c0gc00230e

    Article  CAS  Google Scholar 

  38. Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR (2018) Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 75(19):3569–3592. https://doi.org/10.1007/s00018-018-2883-z

    Article  CAS  PubMed  Google Scholar 

  39. Kadam AA, Jang J, Jee SC, Sung JS, Lee DS (2018) Chitosan-functionalized supermagnetic halloysite nanotubes for covalent laccase immobilization. Carbohydr Polym 194:208–216. https://doi.org/10.1016/j.carbpol.2018.04.046

    Article  CAS  PubMed  Google Scholar 

  40. Yang XY, Chen YF, Yao S, Qian JQ, Guo H, Cai XH (2019) Preparation of immobilized lipase on magnetic nanoparticles dialdehyde starch. Carbohydr Polym 218:324–332. https://doi.org/10.1016/j.carbpol.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  41. Ziegler-Borowska M, Chelminiak-Dudkiewicz D, Siodmiak T, Sikora A, Wegrzynowska-Drzymalska K, Skopinska-Wisniewska J, Kaczmarek H, Marszall MP (2017) Chitosan-collagen coated magnetic nanoparticles for lipase immobilization-new type of “enzyme friendly” polymer shell crosslinking with squaric acid. Catalysts 7(1):26. https://doi.org/10.3390/catal7010026

    Article  CAS  Google Scholar 

  42. Ss A, Zgn B, Sg C (2020) Smba, removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta -ScienceDirect. Bioresour Technol 306:123169. https://doi.org/10.1016/j.biortech.2020.123169

    Article  CAS  Google Scholar 

  43. Gascon V, Marquez-Alvarez C, Blanco RM (2014) Efficient retention of laccase by non-covalent immobilization on amino-functionalized ordered mesoporous silica. Appl Catal Gen 482:116–126. https://doi.org/10.1016/j.apcata.2014.05.035

    Article  CAS  Google Scholar 

  44. Lee KM, Kalyani D, Tiwari MK, Kim TS, Dhiman SS, Lee JK, Kim IW (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645. https://doi.org/10.1016/j.biortech.2012.07.066

    Article  CAS  PubMed  Google Scholar 

  45. Hou C, Qi ZG, Zhu H (2015) Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization. Colloid Surf B Biointerfaces 128:544–551. https://doi.org/10.1016/j.colsurfb.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  46. Ulu A, Birhanli E, Boran F, Koytepe S, Ates B (2020) Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol 150:871–884. https://doi.org/10.1016/j.ijbiomac.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  47. Zhang ST, Wu ZF, Chen G, Wang Z (2018) An improved method to encapsulate laccase from trametes versicolor with enhanced stability and catalytic activity. Catalysts 8(7):286–297. https://doi.org/10.3390/catal8070286

    Article  CAS  Google Scholar 

  48. Wu EH, Li YX, Huang Q, Yang ZK, Wei AY, Hu Q (2019) Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere 233:327–335. https://doi.org/10.1016/j.chemosphere.2019.05.150

    Article  CAS  PubMed  Google Scholar 

  49. Xu R, Zhou Q, Li F, Zhang B (2013) Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal, Chem. Eng J 222:321–329. https://doi.org/10.1016/j.cej.2013.02.074

    Article  CAS  Google Scholar 

  50. Alver E, Metin AL (2017) Chitosan based metal-chelated copolymer nanoparticles: Laccase immobilization and phenol degradation studies. Int Biodeterior Biodegrad 125:235–242. https://doi.org/10.1016/j.ibiod.2017.07.012

    Article  CAS  Google Scholar 

  51. Lin J, Liu Y, Shi C, Le X, Zhou X, Zhao Z, Ou Y, Yang J (2016) Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int J Biol Macromol 84:189–199. https://doi.org/10.1016/j.ijbiomac.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  52. Fernando Bautista L, Morales G, R. (2015) Sanz, Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by laccase from Trametes versicolor covalently immobilized on amino-functionalized SBA-15. Chemosphere 136:273–280. https://doi.org/10.1016/j.chemosphere.2015.05.071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (No. 22178174) and National key R&D program of China (No. 2021YFC2103802). The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTC2206), and Jiangsu Students’ platform for innovation and entrepreneurship training program (No. 202110291109Y).

Funding

This work was supported by the National Natural Science Foundation of China, under Grant 22178174, National key R&D Program of China, under Grant 2021YFC2103802, The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, under Grant XTC2206, and Jiangsu Students’ Platform for Innovation and Entrepreneurship Training Program, under Grant 202110291109Y.

Author information

Authors and Affiliations

Authors

Contributions

RL: conceptualization, methodology, formal analysis, investigation, data curation, writing–original draft, and writing–review & editing. SW methodology and investigation. MH methodology and investigation. WZ methodology and investigation. HX conceptualization, methodology, funding acquisition, and supervision. YH funding acquisition, supervision, and writing–review & editing.

Corresponding authors

Correspondence to Huajin Xu or Yi Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, S., Han, M. et al. Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess Biosyst Eng 45, 1955–1966 (2022). https://doi.org/10.1007/s00449-022-02799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02799-5

Keywords

Navigation