Skip to main content
Log in

The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Wastewater treatment plants (WWTPs) play the role of intercepting microplastics in the environment and provide a platform for bioremediation to remove microplastics. Despite, this opportunity has not been adequately studied. This paper shows the potential ways microplastics-targeted bioremediation could be incorporated into wastewater treatment through the review of relevant literature on bioaugmentation of water treatment processes for pollutants removal. Having reviewed more than 90 papers in this area, it highlights that bioremediation in WWTPs can be employed through bioaugmentation of secondary biological treatment systems, particularly the aerobic conventional activated sludge, sequencing batch reactor, membrane bioreactor and rotating biological contactor. The efficiency of microplastics removal, however, is influenced by the types and forms of microorganisms used, the polymer types and the incubation time (100% for polycaprolactone with Streptomyces thermoviolaceus and 0.76% for low-density polyethylene with Acinetobacter iwoffii). Bioaugmentation of anaerobic system, though possible, is constrained by comparatively less anaerobic microplastics-degrading microorganisms identified. In tertiary system, bioremediation through biological activated carbon and biological aerated filter can be accomplished and enzymatic membrane reactor can be added to the system for deployment of biocatalysts. During sludge treatment, bioaugmentation and addition of enzymes to composting and anaerobic digestion are potential ways to enhance microplastics breakdown. Limitations of bioremediation in wastewater treatment include longer degradation time of microplastics, incomplete biodegradation, variable efficiency, specific microbial activities and uncertainty in colonization. This paper provides important insight into the practical applications of bioremediation in wastewater treatment for microplastics removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wong JKH, Lee KK, Tang KHD, Yap P-S (2020) Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions. Sci Total Environ 719:137512. https://doi.org/10.1016/j.scitotenv.2020.137512

    Article  CAS  PubMed  Google Scholar 

  2. Plastics Europe, EPRO (2021) Plastics–the Facts 2021. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/. Accessed 18 June 2022

  3. OECD (2022) Global plastics outlook: economic drivers, environmental impacts and policy options. https://www.oecd.org/environment/plastics/. Accessed 18 June 2022

  4. OECD (2022) Plastic pollution is growing relentlessly as waste management and recycling fall short, says OECD. https://www.oecd.org/newsroom/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm. Accessed 18 Jun 2022

  5. Tang KHD, Hadibarata T (2021) Microplastics removal through water treatment plants: its feasibility, efficiency, future prospects and enhancement by proper waste management. Environ Challenges 5:100264. https://doi.org/10.1016/j.envc.2021.100264

    Article  CAS  Google Scholar 

  6. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28:2. https://doi.org/10.1186/s12302-015-0069-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang KHD (2020) Ecotoxicological impacts of micro and nanoplastics on marine fauna. Examines Mar Biol Oceanogr 3:1–5. https://doi.org/10.31031/EIMBO.2020.03.000563

    Article  Google Scholar 

  8. Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. A review Environ Chem Lett 18:807–828. https://doi.org/10.1007/s10311-020-00983-1

    Article  CAS  Google Scholar 

  9. Tang KHD (2021) Interactions of microplastics with persistent organic pollutants and the ecotoxicological effects: a review. Trop Aquat Soil Pollut 1:24–34

    Article  Google Scholar 

  10. Freeman S, Booth AM, Sabbah I, Tiller R, Dierking J, Klun K, Rotter A, Ben-David E, Javidpour J, Angel DL (2020) Between source and sea: the role of wastewater treatment in reducing marine microplastics. J Environ Manage 266:110642. https://doi.org/10.1016/j.jenvman.2020.110642

    Article  CAS  PubMed  Google Scholar 

  11. Magni S, Binelli A, Pittura L, Avio CG, Della Torre C, Parenti CC, Gorbi S, Regoli F (2019) The fate of microplastics in an Italian wastewater treatment plant. Sci Total Environ 652:602–610. https://doi.org/10.1016/j.scitotenv.2018.10.269

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Y, Kumar M, Sarsaiya S, Sirohi R, Awasthi SK, Sindhu R, Binod P, Pandey A, Bolan NS, Zhang Z, Singh L, Kumar S, Awasthi MK (2022) Challenges and opportunities in bioremediation of micro-nano plastics: a review. Sci Total Environ 802:149823. https://doi.org/10.1016/j.scitotenv.2021.149823

    Article  CAS  PubMed  Google Scholar 

  13. Tang KHD, Awa SH, Hadibarata T (2020) Phytoremediation of copper-contaminated water with Pistia stratiotes in surface and distilled water. Water Air Soil Pollut 231:573. https://doi.org/10.1007/s11270-020-04937-9

    Article  CAS  Google Scholar 

  14. Tang KHD (2019) Phytoremediation of soil contaminated with petroleum hydrocarbons: a review of recent literature. Glob J Civ Environ Eng 1:33–42. https://doi.org/10.36811/gjcee.2019.110006

    Article  Google Scholar 

  15. Tang KHD, Kristanti RA (2022) Bioremediation of perfluorochemicals: current state and the way forward. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-022-02694-z

    Article  PubMed  Google Scholar 

  16. Kelly JJ, London MG, McCormick AR, Rojas M, Scott JW, Hoellein TJ (2021) Wastewater treatment alters microbial colonization of microplastics. PLoS ONE 16:e0244443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Z, Chen Y (2020) Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. Chem Eng J 382:122955. https://doi.org/10.1016/j.cej.2019.122955

    Article  CAS  Google Scholar 

  18. Ru J, Huo Y, Yang Y (2020) Microbial degradation and valorization of plastic wastes. Front Microbiol 11:442. https://doi.org/10.3389/fmicb.2020.00442

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang L, Gao J, Liu Y, Zhuang G, Peng X, Wu W-M, Zhuang X (2021) Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere 262:127818. https://doi.org/10.1016/j.chemosphere.2020.127818

    Article  CAS  PubMed  Google Scholar 

  20. Judy JD, Williams M, Gregg A, Oliver D, Kumar A, Kookana R, Kirby JK (2019) Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environ Pollut 252:522–531. https://doi.org/10.1016/j.envpol.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  21. Kumar V, Kumar R, Singh J, Kumar P (2019) Contaminants in agriculture and environment: health risks and remediation. Agriculture and Environmental Science Academy, India

    Google Scholar 

  22. Broszeit S, Hattam C, Beaumont N (2016) Bioremediation of waste under ocean acidification: reviewing the role of Mytilus edulis. Mar Pollut Bull 103:5–14. https://doi.org/10.1016/j.marpolbul.2015.12.040

    Article  CAS  PubMed  Google Scholar 

  23. Reichert J, Schellenberg J, Schubert P, Wilke T (2018) Responses of reef building corals to microplastic exposure. Environ Pollut 237:955–960. https://doi.org/10.1016/j.envpol.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  24. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17. https://doi.org/10.1016/j.envpol.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  25. Gutow L, Eckerlebe A, Giménez L, Saborowski R (2016) Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ Sci Technol 50:915–923. https://doi.org/10.1021/acs.est.5b02431

    Article  CAS  PubMed  Google Scholar 

  26. Goss H, Jaskiel J, Rotjan R (2018) Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Mar Pollut Bull 135:1085–1089. https://doi.org/10.1016/j.marpolbul.2018.08.024

    Article  CAS  PubMed  Google Scholar 

  27. Seng N, Lai S, Fong J, Saleh MF, Cheng C, Cheok ZY, Todd PA (2020) Early evidence of microplastics on seagrass and macroalgae. Mar Freshw Res 71:922–928

    Article  Google Scholar 

  28. Masiá P, Sol D, Ardura A, Laca A, Borrell YJ, Dopico E, Laca A, Machado-Schiaffino G, Díaz M, Garcia-Vazquez E (2020) Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Mar Pollut Bull 156:111252. https://doi.org/10.1016/j.marpolbul.2020.111252

    Article  CAS  PubMed  Google Scholar 

  29. Amobonye A, Bhagwat P, Singh S, Pillai S (2021) Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ 759:143536. https://doi.org/10.1016/j.scitotenv.2020.143536

    Article  CAS  PubMed  Google Scholar 

  30. Jabloune R, Khalil M, Ben Moussa IE, Simao-Beaunoir A-M, Lerat S, Brzezinski R, Beaulieu C (2020) Enzymatic degradation of p-Nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes Environ. https://doi.org/10.1264/jsme2.ME19086

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tang KHD, Lock SSM, Yap P-S, Cheah KW, Chan YH, Yiin CL, Ku AZE, Loy ACM, Chin BLF, Chai YH (2022) Immobilized enzyme/microorganism complexes for degradation of microplastics: a review of recent advances, feasibility and future prospects. Sci Total Environ 832:154868. https://doi.org/10.1016/j.scitotenv.2022.154868

    Article  CAS  PubMed  Google Scholar 

  32. Hou J, Dong G, Ye Y, Chen V (2014) Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane. J Memb Sci 469:19–30. https://doi.org/10.1016/j.memsci.2014.06.027

    Article  CAS  Google Scholar 

  33. Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11:1082–1087. https://doi.org/10.1002/biot.201600008

    Article  CAS  PubMed  Google Scholar 

  34. Gies EA, LeNoble JL, Noël M, Etemadifar A, Bishay F, Hall ER, Ross PS (2018) Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull 133:553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  35. Conley K, Clum A, Deepe J, Lane H, Beckingham B (2019) Wastewater treatment plants as a source of microplastics to an urban estuary: removal efficiencies and loading per capita over one year. Water Res X 3:100030. https://doi.org/10.1016/j.wroa.2019.100030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. El Hayany B, El Fels L, Quénéa K, Dignac M-F, Rumpel C, Gupta VK, Hafidi M (2020) Microplastics from lagooning sludge to composts as revealed by fluorescent staining- image analysis, Raman spectroscopy and pyrolysis-GC/MS. J Environ Manage 275:111249. https://doi.org/10.1016/j.jenvman.2020.111249

    Article  CAS  PubMed  Google Scholar 

  37. Xu Q, Gao Y, Xu L, Shi W, Wang F, LeBlanc GA, Cui S, An L, Lei K (2020) Investigation of the microplastics profile in sludge from China’s largest water reclamation plant using a feasible isolation device. J Hazard Mater 388:122067. https://doi.org/10.1016/j.jhazmat.2020.122067

    Article  CAS  PubMed  Google Scholar 

  38. Mahon AM, O’Connell B, Healy MG, O’Connor I, Officer R, Nash R, Morrison L (2017) Microplastics in sewage sludge: effects of treatment. Environ Sci Technol 51:810–818. https://doi.org/10.1021/acs.est.6b04048

    Article  CAS  PubMed  Google Scholar 

  39. Ramalho R (2012) Introduction to wastewater treatment processes. Elsevier, The Netherlands

    Google Scholar 

  40. Ranade VV, Bhandari VM (2014) Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, Oxford, UK

    Book  Google Scholar 

  41. Rao DG, Senthilkumar R, Byrne JA, Feroz S (2012) Wastewater treatment: advanced processes and technologies. CRC Press, London, UK

    Book  Google Scholar 

  42. Licciardello F, Milani M, Consoli S, Pappalardo N, Barbagallo S, Cirelli G (2018) Wastewater tertiary treatment options to match reuse standards in agriculture. Agric Water Manag 210:232–242. https://doi.org/10.1016/j.agwat.2018.08.001

    Article  Google Scholar 

  43. Lares M, Ncibi MC, Sillanpää M, Sillanpää M (2018) Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133:236–246. https://doi.org/10.1016/j.watres.2018.01.049

    Article  CAS  PubMed  Google Scholar 

  44. Feng L, Luo J, Chen Y (2015) Dilemma of sewage sludge treatment and disposal in China. Environ Sci Technol 49:4781–4782. https://doi.org/10.1021/acs.est.5b01455

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Ni J, Ma T, Liu T, Zheng M (2015) Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour Technol 183:25–32. https://doi.org/10.1016/j.biortech.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, He H, Wang M, Wang S, Zhang J, Wei W, Xu H, Lv Z, Shen D (2013) Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system. Bioresour Technol 142:445–453. https://doi.org/10.1016/j.biortech.2013.05.067

    Article  CAS  PubMed  Google Scholar 

  47. Ma Q, Qu H, Meng N, Li S, Wang J, Liu S, Qu Y, Sun Y (2020) Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems. Environ Res 182:109123. https://doi.org/10.1016/j.envres.2020.109123

    Article  CAS  PubMed  Google Scholar 

  48. Ren C, Wang Y, Tian L, Chen M, Sun J, Li L (2018) Genetic bioaugmentation of activated sludge with dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52. Environ Sci Technol 52:5339–5348. https://doi.org/10.1021/acs.est.7b04633

    Article  CAS  PubMed  Google Scholar 

  49. Yao Y, Lu Z, Zhu F, Min H, Bian C (2013) Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. J Hazard Mater 261:550–558. https://doi.org/10.1016/j.jhazmat.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  50. Boonnorat J, Techkarnjanaruk S, Honda R, Angthong S, Boonapatcharoen N, Muenmee S, Prachanurak P (2018) Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. Chemosphere 202:208–217. https://doi.org/10.1016/j.chemosphere.2018.03.084

    Article  CAS  PubMed  Google Scholar 

  51. Ji J, Kakade A, Zhang R, Zhao S, Khan A, Liu P, Li X (2019) Alcohol ethoxylate degradation of activated sludge is enhanced by bioaugmentation with Pseudomonas sp. LZ-B Ecotoxicol Environ Saf 169:335–343. https://doi.org/10.1016/j.ecoenv.2018.11.045

    Article  CAS  PubMed  Google Scholar 

  52. Bernardo P, Drioli E (2010) 4.08-membrane technology: latest applications in the refinery and petrochemical field. In: Drioli E, Giorno LBT (eds) CMS and E. Elsevier, Oxford, pp 211–239

    Google Scholar 

  53. Nguyen PY, Silva AF, Reis AC, Nunes OC, Rodrigues AM, Rodrigues JE, Cardoso VV, Benoliel MJ, Reis MAM, Oehmen A, Carvalho G (2019) Bioaugmentation of membrane bioreactor with Achromobacter denitrificans strain PR1 for enhanced sulfamethoxazole removal in wastewater. Sci Total Environ 648:44–55. https://doi.org/10.1016/j.scitotenv.2018.08.100

    Article  CAS  PubMed  Google Scholar 

  54. Ji J, Kulshreshtha S, Kakade A, Majeed S, Li X, Liu P (2020) Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int Biodeterior Biodegradation 150:104939. https://doi.org/10.1016/j.ibiod.2020.104939

    Article  CAS  Google Scholar 

  55. Wu H, Shen J, Jiang X, Liu X, Sun X, Li J, Han W, Mu Y, Wang L (2018) Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. Bioresour Technol 264:98–105. https://doi.org/10.1016/j.biortech.2018.05.071

    Article  CAS  PubMed  Google Scholar 

  56. Amorim CL, Duque AF, Afonso CMM, Castro PML (2013) Bioaugmentation for treating transient 4-fluorocinnamic acid shock loads in a rotating biological contactor. Bioresour Technol 144:554–562. https://doi.org/10.1016/j.biortech.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  57. Liu F, Hu X, Zhao X, Guo H, Zhao Y, Jiang B (2018) Rapid nitrification process upgrade coupled with succession of the microbial community in a full-scale municipal wastewater treatment plant (WWTP). Bioresour Technol 249:1062–1065. https://doi.org/10.1016/j.biortech.2017.10.076

    Article  CAS  PubMed  Google Scholar 

  58. Skariyachan S, Patil AA, Shankar A, Manjunath M, Bachappanavar N, Kiran S (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68. https://doi.org/10.1016/j.polymdegradstab.2018.01.018

    Article  CAS  Google Scholar 

  59. Maroof L, Khan I, Yoo HS, Kim S, Park H-T, Ahmad B, Azam S (2021) Identification and characterization of low density polyethylene degrading bacteria isolated from soils of waste disposal sites. Environ Eng Res 26:109–119

    Google Scholar 

  60. Taghavi N, Singhal N, Zhuang W-Q, Baroutian S (2021) Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere 263:127975. https://doi.org/10.1016/j.chemosphere.2020.127975

    Article  CAS  PubMed  Google Scholar 

  61. Park SY, Kim CG (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222:527–533. https://doi.org/10.1016/j.chemosphere.2019.01.159

    Article  CAS  PubMed  Google Scholar 

  62. Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, Zhang W (2019) Biodegradation of polyethylene by enterobacter sp D1 from the guts of wax moth Galleria mellonella. Int J Environ Res Public Heal 16:1941

    Article  CAS  Google Scholar 

  63. Soud SA (2019) Biodegradation of polyethylene LDPE plastic waste using locally isolated Streptomyces sp. J Pharm Sci Res 11:1333–1339

    CAS  Google Scholar 

  64. Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE 13:e0198446. https://doi.org/10.1371/journal.pone.0198446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Awasthi S, Srivastava P, Singh P, Tiwary D, Mishra PK (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. Biotech 7:332. https://doi.org/10.1007/s13205-017-0959-3

    Article  Google Scholar 

  66. Helen AS, Uche EC, Hamid FS (2017) Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in Peninsular Malaysia. Int J Biosci Biochem Bioinform 7:245–251

    CAS  Google Scholar 

  67. Auta HS, Emenike CU, Jayanthi B, Fauziah SH (2018) Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull 127:15–21. https://doi.org/10.1016/j.marpolbul.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  68. Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F (2020) Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Mar Environ Res 158:104949. https://doi.org/10.1016/j.marenvres.2020.104949

    Article  CAS  PubMed  Google Scholar 

  69. Li B-J, Hu J, Huang L-Y, Lv Y, Zuo J, Zhang W, Ying W-C, Matsumoto MR (2013) Removal of MTBE in biological activated carbon adsorbers. Environ Prog Sustain Energy 32:239–248. https://doi.org/10.1002/ep.11614

    Article  CAS  Google Scholar 

  70. Marsidi N, Abu Hasan H, Sheikh Abdullah SR (2018) A review of biological aerated filters for iron and manganese ions removal in water treatment. J Water Process Eng 23:1–12. https://doi.org/10.1016/j.jwpe.2018.01.010

    Article  Google Scholar 

  71. Wang H, Gao Q, Liu S, Chen Q (2021) Simultaneous nitrogen and carbon removal in a single biological aerated filter by the bioaugmentation with heterotrophic-aerobic nitrogen removal bacteria. Environ Technol 42:3716–3724. https://doi.org/10.1080/09593330.2020.1739147

    Article  CAS  PubMed  Google Scholar 

  72. Zdarta J, Jesionowski T, Pinelo M, Meyer AS, Iqbal HMN, Bilal M, Nguyen LN, Nghiem LD (2022) Free and immobilized biocatalysts for removing micropollutants from water and wastewater: recent progress and challenges. Bioresour Technol 344:126201. https://doi.org/10.1016/j.biortech.2021.126201

    Article  CAS  PubMed  Google Scholar 

  73. Lloret L, Eibes G, Feijoo G, Moreira MT, Lema JM (2012) Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. J Hazard Mater 213–214:175–183. https://doi.org/10.1016/j.jhazmat.2012.01.082

    Article  CAS  PubMed  Google Scholar 

  74. Jia Y, Samak NA, Hao X, Chen Z, Yang G, Zhao X, Mu T, Yang M, Xing J (2021) Nano-immobilization of PETase enzyme for enhanced polyethylene terephthalate biodegradation. Biochem Eng J 176:108205. https://doi.org/10.1016/j.bej.2021.108205

    Article  CAS  Google Scholar 

  75. Krakor E, Gessner I, Wilhelm M, Brune V, Hohnsen J, Frenzen L, Mathur S (2021) Selective degradation of synthetic polymers through enzymes immobilized on nanocarriers. MRS Commun 11:363–371. https://doi.org/10.1557/s43579-021-00039-7

    Article  CAS  Google Scholar 

  76. Schwaminger SP, Fehn S, Rauwolf S, Steegmüller T, Löwe H, Pflüger-Grau K, Berensmeier S (2021) Immobilization of PETase enzymes on magnetic iron oxide nanoparticles for the decomposition of microplastic PET. Nanoscale Adv 3:4395–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jayaprakash V, Palempalli UMD (2019) Studying the effect of biosilver nanoparticles on polyethylene degradation. Appl Nanosci 9:491–504. https://doi.org/10.1007/s13204-018-0922-6

    Article  CAS  Google Scholar 

  78. Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T (2020) Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized Proteinase K. Biomacromol 21:3301–3307. https://doi.org/10.1021/acs.biomac.0c00759

    Article  CAS  Google Scholar 

  79. Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Höppner A, Ferrer M, Gohlke H, Smits SHJ, Jaeger KE (2020) A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri—structural and functional insights. Front Microbiol 11:114

    Article  PubMed  PubMed Central  Google Scholar 

  80. DelRe C, Jiang Y, Kang P, Kwon J, Hall A, Jayapurna I, Ruan Z, Ma L, Zolkin K, Li T, Scown CD, Ritchie RO, Russell TP, Xu T (2021) Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592:558–563. https://doi.org/10.1038/s41586-021-03408-3

    Article  CAS  PubMed  Google Scholar 

  81. Elsayed A, Kim Y (2022) Estimation of kinetic constants in high-density polyethylene bead degradation using hydrolytic enzymes. Environ Pollut 298:118821. https://doi.org/10.1016/j.envpol.2022.118821

    Article  CAS  PubMed  Google Scholar 

  82. Rolsky C, Kelkar V, Driver E, Halden RU (2020) Municipal sewage sludge as a source of microplastics in the environment. Curr Opin Environ Sci Heal 14:16–22. https://doi.org/10.1016/j.coesh.2019.12.001

    Article  Google Scholar 

  83. Yu Z, Tang J, Liao H, Liu X, Zhou P, Chen Z, Rensing C, Zhou S (2018) The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour Technol 265:146–154. https://doi.org/10.1016/j.biortech.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  84. Chen Z, Zhao W, Xing R, Xie S, Yang X, Cui P, Lü J, Liao H, Yu Z, Wang S, Zhou S (2020) Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. J Hazard Mater 384:121271. https://doi.org/10.1016/j.jhazmat.2019.121271

    Article  CAS  PubMed  Google Scholar 

  85. Swiss Federal Institute of Aquatic Science and Technology (2022) Sanitation Systems Perspective. https://sswm.info/perspective/sanitation-systems-perspective. Accessed 28 Jul 2022

  86. Alassali A, Moon H, Picuno C, Meyer RSA, Kuchta K (2018) Assessment of polyethylene degradation after aging through anaerobic digestion and composting. Polym Degrad Stab 158:14–25. https://doi.org/10.1016/j.polymdegradstab.2018.10.014

    Article  CAS  Google Scholar 

  87. Baek G, Kim J, Shin SG, Lee C (2016) Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time. Appl Microbiol Biotechnol 100:927–937. https://doi.org/10.1007/s00253-015-7018-y

    Article  CAS  PubMed  Google Scholar 

  88. Yan F, Wei R, Cui Q, Bornscheuer UT, Liu Y-J (2021) Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microb Biotechnol 14:374–385. https://doi.org/10.1111/1751-7915.13580

    Article  CAS  PubMed  Google Scholar 

  89. Tomita K, Hayashi N, Ikeda N, Kikuchi Y (2003) Isolation of a thermophilic bacterium degrading some nylons. Polym Degrad Stab 81:511–514. https://doi.org/10.1016/S0141-3910(03)00151-4

    Article  CAS  Google Scholar 

  90. Chua TK, Tseng M, Yang MK (2013) Degradation of poly(ε-caprolactone) by thermophilic Streptomyces thermoviolaceus subsp. thermoviolaceus 76T–2. AMB Express 3:8. https://doi.org/10.1186/2191-0855-3-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eggen T, Vogelsang C (2015) Occurrence and fate of pharmaceuticals and personal care products in wastewater. In: Zeng EYBT (ed) CAC, Persistent Organic Pollutants (POPs): Analytical Techniques, Environmental Fate and Biological Effects. Elsevier, Amsterdam, pp 245–294

    Chapter  Google Scholar 

  92. Donoso-Bravo A, Fdz-Polanco M (2013) Anaerobic co-digestion of sewage sludge and grease trap: assessment of enzyme addition. Process Biochem 48:936–940. https://doi.org/10.1016/j.procbio.2013.04.005

    Article  CAS  Google Scholar 

  93. Arhoun B, Villen-Guzman M, El MR, Gomez-Lahoz C (2021) Anaerobic codigestion with fruit and vegetable wastes: an opportunity to enhance the sustainability and circular economy of the WWTP digesters. In: Tyagi V, Aboudi KBT (eds) CE and RR. Elsevier, Amsterdam, pp 103–132

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the University of Arizona at Northwest A and F University and Curtin University Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuok Ho Daniel Tang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, K.H.D., Hadibarata, T. The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess Biosyst Eng 45, 1865–1878 (2022). https://doi.org/10.1007/s00449-022-02793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02793-x

Keywords

Navigation