Skip to main content
Log in

Enhanced vanillin production from eugenol by Bacillus cereus NCIM-5727

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biovanillin production by a wild strain of Bacillus cereus NCIM-5727 is studied using eugenol as the precursor aiming to achieve maximum vanillin productivity. Based on shake flask optimization, molar yield and global volumetric productivity of vanillin reached up to 71.2% (6.6 gL−1) and 0.18 g(Lh)−1, respectively, at 36 h by resting cells of B. cereus NCIM-5727 at the optimum cell concentration of 3 gL−1 using eugenol concentration of 10 gL−1 at 37 ºC, buffer pH 7.0, buffer volume 10%, and shaking speed 180 rpm. Furthermore, small-scale optimization in a bioreactor at the controlled aeration rate of 0.5 Lmin−1, agitation rate of 210 rpm, and pH 7.0 enhanced the global volumetric productivity of vanillin up to 0.28 g(Lh)−1 at 25 h of bioconversion. The highest vanillin molar yield (75.2%) is reported using resting cells of B. cereus NCIM-5727 upon eugenol biotransformation and found stable for 10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Code availability

Not applicable.

References

  1. Chen P, Yan L, Wu Z, Li S, Bai Z, Yan X, Wang N, Liang N, Li H (2016) A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep 6:20400. https://doi.org/10.1038/srep20400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rao RS, Ravishankar GA (2000) Review: Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304. https://doi.org/10.1002/1097-0010(200002)

    Article  CAS  Google Scholar 

  3. Ding P, Garrett M, Oystein L, Nienow AW, Pacek AW (2012) Generation of Hydrogen Gas during the Catalytic Oxidation of Sodium Lignosulfonate to Vanillin: initial results. Ind Eng Chem Res 51:184–188. https://doi.org/10.1021/ie201607t

    Article  CAS  Google Scholar 

  4. Xu P, Hua D, Ma C (2007) Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 25:571–576. https://doi.org/10.1016/j.tibtech.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  5. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129

    Article  CAS  PubMed  Google Scholar 

  6. Shimoni E, Ravid U, Shoham Y (2000) Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. J Biotechnol 78:1–9. https://doi.org/10.1016/s0168-1656(99)00199-6

    Article  CAS  PubMed  Google Scholar 

  7. Hua D, Ma C, Lin S, Song L, Deng Z, Maomy Z, Zhang Z, Yu B, Xu P (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130:463–470. https://doi.org/10.1016/j.jbiotec.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  8. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030. https://doi.org/10.1007/s00253-006-0569-1

    Article  CAS  PubMed  Google Scholar 

  9. Zamzuri NA, Abd-Aziz S (2013) Biovanillin from agro wastes as an alternative food flavour. J Sci Food Agric 93:429–438. https://doi.org/10.1002/jsfa.5962

    Article  CAS  PubMed  Google Scholar 

  10. Gallage NJ, Moller BL (2015) Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant 8:40–57. https://doi.org/10.1016/j.molp.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Paz A, Outeirino D, de Souza P, Oliveira R, Dominguez JM (2018) Fed-batch production of vanillin by Bacillus aryabhattai BA03. New Biotechnol 40:186–191. https://doi.org/10.1016/j.nbt.2017.07.012

    Article  CAS  Google Scholar 

  12. Tadasa K (1977) Degradation of eugenol by a microorganism. Argic Biol Chem 41:925–929. https://doi.org/10.1080/00021369.1977.10862621

    Article  CAS  Google Scholar 

  13. Rabenhorst J (1996) Production of methoxyphenol type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbiol Biotechnol 46:470–474. https://doi.org/10.1007/s002530050846

    Article  CAS  Google Scholar 

  14. Overhage J, Steinbuchel A, Priefert H (2006) Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsissp HR167. J Biotechnol 125:369–376. https://doi.org/10.1016/j.jbiotec.2006.03.024

    Article  CAS  PubMed  Google Scholar 

  15. Unno T, Kim SJ, Kanaly RA, Ahn JH, Kang SI, Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducensJin1 growing on eugenol and isoeugenol. J Agric Food Chem 55:8556–8561. https://doi.org/10.1021/jf0715929

    Article  CAS  PubMed  Google Scholar 

  16. Kadakol JC, Kamanavalli CM (2010) Biodegradation of eugenol by Bacillus cereus strain PN24. E-J Chem 7:74–80. https://doi.org/10.1155/2010/364637

    Article  Google Scholar 

  17. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and vanillic acid. New Biotechnol 28:656–664. https://doi.org/10.1016/j.nbt.2011.06.009

    Article  CAS  Google Scholar 

  18. Giedraityte G, Kalediene L (2014) Biotransformation of eugenol via protocatechuic acid by thermophilic Geobacillus sp. AY 946034 strain. J Microbiol Biotechnol 24:475–482. https://doi.org/10.4014/jmb.1309.09069

    Article  CAS  PubMed  Google Scholar 

  19. Singh A, Mukhopadhyay K, Ghosh Sachan S (2019) Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003. Biocatal Biotransfor 37:291–303. https://doi.org/10.1080/10242422.2018.1544245

    Article  CAS  Google Scholar 

  20. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  21. Kamble AL, Meena VS, Banerjee UC (2010) Effect of agitation and aeration on the production of nitrile hydratase by Rhodococcuserythropolis MTCC 1526 in a stirred tank reactor. Lett Appl Microbiol 51:413–420. https://doi.org/10.1111/j.1472-765X.2010.02909.x

    Article  CAS  PubMed  Google Scholar 

  22. Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 6:13. https://doi.org/10.1186/1475-2859-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Gioia D, Luziatelli F, Negroni A, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156:309–316. https://doi.org/10.1016/j.jbiotec.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  24. Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiol 144:1397–1405. https://doi.org/10.1099/00221287-144-5-1397

    Article  CAS  Google Scholar 

  25. Ghosh S, Sachan A, Sen SK, Mitra A (2007) Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J Ind Microbiol Biotechnol 34:131–138. https://doi.org/10.1007/s10295-006-0177-1

    Article  CAS  PubMed  Google Scholar 

  26. Song SH, Yeom SH, Choi SS, Yoo YJ (2002) Effect of aeration on denitrification by Ochrobactrum anthropic SY509. Biotechnol Bioprocess Eng 7:352–356. https://doi.org/10.1007/BF02933520

    Article  CAS  Google Scholar 

  27. Tilay A, Bule M, Annapure U (2010) Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J Agric Food Chem 58:4401–4405. https://doi.org/10.1021/jf904141u

    Article  CAS  PubMed  Google Scholar 

  28. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2010) Optimization of media composition for improving conversion of isoeugenol into vanillin with Pseudomonas sp. strain KOB10 using the Taguchi method. Biocatal Biotransfor 28:339–347. https://doi.org/10.3109/10242422.2010.530660

    Article  CAS  Google Scholar 

  29. Rivas Torres B, Aliakbarian N, Torre P, Perego P, Domínguez JM, Zilli M, Converti A (2009) Vanillin bioproduction from alkaline hydrolyzate of corn cob by Escherichia coli JM109/pBB1. Enzyme Microb Tech 44:154–158. https://doi.org/10.1016/j.enzmictec.2008.10.003

    Article  CAS  Google Scholar 

  30. Sindhwani G, Uk I, Aeri V (2012) Microbial transformation of eugenol to vanillin. J Microbiol Biotechnol Res 2:313–318

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of India through its funding agency DST SERB (Department of Science and Technology-Science and Engineering Research Board) under Grant No. SB/YS/LS-308/2013 in the form of research projects. The authors highly acknowledge Birla Institute of Technology for the infrastructure facilities. The authors express their gratitude to Dr. VK Nigam for assistance in operating the CSTR.

Funding

This work was supported by the Ministry of Science and Technology of India through its funding agency DST SERB (Department of Science and Technology-Science and Engineering Research Board) under Grant No. SB/YS/LS-308/2013 in the form of research projects.

Author information

Authors and Affiliations

Authors

Contributions

Each author has contributed significantly to this work. AS conducted experiments, literature search, prepared the tables or figures, and drafted the manuscript. SGS and KM contributed to the conception and design of the manuscript, and reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shashwati Ghosh Sachan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

The authors declare that they consent to participate.

Consent to publish

The authors declare that they consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 331 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Mukhopadhyay, K. & Ghosh Sachan, S. Enhanced vanillin production from eugenol by Bacillus cereus NCIM-5727. Bioprocess Biosyst Eng 45, 1811–1824 (2022). https://doi.org/10.1007/s00449-022-02787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02787-9

Keywords

Navigation