Skip to main content
Log in

Engineering the methyltransferase through inactivation of the genK and genL leads to a significant increase of gentamicin C1a production in an industrial strain of Micromonospora echinospora 49-92S

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, a single-component high-yielding Micromonospora echinospora strain 49-92S-KL01 was constructed by deleting methyltransferase-encoding genes genK and genL. In 5-L fermentation trials, gentamicin C1a titers in the mutant strain were 3.22-fold higher than that in the parental strain (211 U/mL vs. 50 U/mL). The glycolysis pathway and tricarboxylic acid cycle fluxes were reduced by 26.8% and 26.6%, respectively, compared to the parental strain according to the metabolic flux analysis during the stationary phase, resulting in lower levels of energy supplements required for the cellular maintenance. Meanwhile, a significant enhancement in precursor (paromamine) accumulation and availability was observed in 49-92S-KL01 compared to parental strain. These results indicate that genK and genL significantly affect the synthesis of gentamicin C1a. In addition, this study provides a more rational strategy for gentamicin C1a production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, Coniglio CT, Charney W, Herzog HL, Black J (1963) Gentamicin, a new antibiotic complex from micromonospora. J Med Chem 6:463–464. https://doi.org/10.1021/jm00340a034

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Li H, Ni X, Zhang H, Xia H (2013) Construction of a gentamicin C1a-overproducing strain of Micromonospora purpurea by inactivation of the gacD gene. Microbiol Res 168(5):263–267. https://doi.org/10.1016/j.micres.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Rodriquez M, Cretoso DS, Euterpio MA, Russo P, Crescenzi C, Aquino RP (2015) Fast determination of underivatized gentamicin C components and impurities by LC-MS using a porous graphitic carbon stationary phase. Anal Bioanal Chem 407(25):7691–7701. https://doi.org/10.1007/s00216-015-8933-6

    Article  CAS  PubMed  Google Scholar 

  4. Yoshizawa S, Fourmy D, Puglisi JD (1998) Structural origins of gentamicin antibiotic action. EMBO J 17(22):6437–6448. https://doi.org/10.1093/emboj/17.22.6437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bezdjian A, Mujica-Mota MA, Devic S, Daniel SJ (2015) The effect of radiotherapy on gentamicin ototoxicity: an animal model. Otolaryngol Head Neck Surg 152(6):1094–1101. https://doi.org/10.1177/0194599815573197

    Article  PubMed  Google Scholar 

  6. Boehr DD, Daigle DM, Wright GD (2004) Domain-domain interactions in the aminoglycoside antibiotic resistance enzyme AAC(6’)-APH(2’’). Biochemistry 43(30):9846–9855. https://doi.org/10.1021/bi049135y

    Article  CAS  PubMed  Google Scholar 

  7. Xi L, Wu G, Zhu Y (2006) Analysis of etimicin sulfate by liquid chromatography with pulsed amperometric detection. J Chromatogr A 1115(1–2):202–207. https://doi.org/10.1016/j.chroma.2006.02.093

    Article  CAS  PubMed  Google Scholar 

  8. Unwin J, Standage S, Alexander D, Hosted T Jr, Horan AC, Wellington EM (2004) Gene cluster in Micromonospora echinospora ATCC15835 for the biosynthesis of the gentamicin C complex. J Antibiot (Tokyo) 57(7):436–445. https://doi.org/10.7164/antibiotics.57.436

    Article  CAS  Google Scholar 

  9. Kim HJ, McCarty RM, Ogasawara Y, Liu YN, Mansoorabadi SO, LeVieux J, Liu HW (2013) GenK-catalyzed C-6’ methylation in the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J Am Chem Soc 135(22):8093–8096. https://doi.org/10.1021/ja312641f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li S, Guo J, Reva A, Huang F, Xiong B, Liu Y, Deng Z, Leadlay PF, Sun Y (2018) Methyltransferases of gentamicin biosynthesis. Proc Natl Acad Sci U S A 115(6):1340–1345. https://doi.org/10.1073/pnas.1711603115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim HJ, Liu YN, McCarty RM, Liu HW (2017) Reaction catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-l-methionine methyltransferase in the biosynthetic pathway of gentamicin, proceeds with retention of configuration. J Am Chem Soc 139(45):16084–16087. https://doi.org/10.1021/jacs.7b09890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong W, Yan L (2012) Identification of gntK, a gene required for the methylation of purpurosamine C-6’ in gentamicin biosynthesis. J Gen Appl Microbiol 58(5):349–356. https://doi.org/10.2323/jgam.58.349

    Article  CAS  PubMed  Google Scholar 

  13. Guo J, Huang F, Huang C, Duan X, Jian X, Leeper F, Deng Z, Leadlay PF, Sun Y (2014) Specificity and promiscuity at the branch point in gentamicin biosynthesis. Chem Biol 21(5):608–618. https://doi.org/10.1016/j.chembiol.2014.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gu Y, Ni X, Ren J, Gao H, Wang D, Xia H (2015) Biosynthesis of epimers C2 and C2a in the gentamicin C complex. ChemBioChem 16(13):1933–1942. https://doi.org/10.1002/cbic.201500258

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Gao W, Zhou S, Wen Z, Ni X, Xia H (2017) Improving gentamicin B and gentamicin C1a production by engineering the glycosyltransferases that transfer primary metabolites into secondary metabolites biosynthesis. Microbiol Res 203:40–46. https://doi.org/10.1016/j.micres.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  16. Wei Z, Shi X, Lian R, Wang W, Hong W, Guo S (2019) Exclusive production of gentamicin C1a from Micromonospora purpurea by metabolic engineering. Antibiotics (Basel) 8(4):267. https://doi.org/10.3390/antibiotics8040267

    Article  CAS  Google Scholar 

  17. Chen C, Hong M, Chu J, Huang M, Ouyang L, Tian X, Zhuang Y (2017) Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Bioprocess Biosyst Eng 40(2):201–209. https://doi.org/10.1007/s00449-016-1687-5

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Hang H, Tian X, Zeng W, Yu Z, Wang X, Tang Y, Zhuang Y, Chu J (2019) Combined available nitrogen resources enhanced erythromycin production and preliminary exploration of metabolic flux analysis under nitrogen perturbations. Bioprocess Biosyst Eng 42(11):1747–1756. https://doi.org/10.1007/s00449-019-02171-0

    Article  CAS  PubMed  Google Scholar 

  19. Xu F, Ke X, Hong M, Huang M, Chen C, Tian X, Hang H, Chu J (2021) Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via 13C labeling experiments and enhancement of erythromycin production by rational metabolic engineering of Saccharopolyspora erythraea. Biochem Biophys Res Commun 542:73–79. https://doi.org/10.1016/j.bbrc.2021.01.024

    Article  CAS  PubMed  Google Scholar 

  20. Park JY, Choi SU (2014) Optimization of transconjugation and characterization of attB integration site for Streptomyces cinnamoneus producing transglutaminase. Biologia 69:953–958. https://doi.org/10.2478/s11756-014-0408-2

    Article  CAS  Google Scholar 

  21. Ni X, Sun Z, Zhang H, He H, Ji Z, Xia H (2014) Genetic engineering combined with random mutagenesis to enhance G418 production in Micromonospora echinospora. J Ind Microbiol Biotechnol 41(9):1383–1390. https://doi.org/10.1007/s10295-014-1479-3

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume Set), vol 999. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  23. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301. https://doi.org/10.1007/s002530000403

    Article  CAS  PubMed  Google Scholar 

  24. Tian JT, Li MC, Hang HF, Gou MJ, Chu J, Zhuang YP (2019) UV spectrophotometric determination of the concentration of gentamicin C1a in the application of high throughput screening. Chin J Antibiot 44(1):59–67. https://doi.org/10.13461/j.cnki.cja.006511

    Article  Google Scholar 

  25. Ge XB, Xu P, Liu Y, Meng XY, Ye H, Yang CJ, Dong HW (2022) Breeding and identification of Micromonospora purprua mutant CH20190225-107. Chin J Antibiot. https://doi.org/10.13461/j.cnki.cja.007269

    Article  Google Scholar 

  26. Choi SU, Lee CK, Hwang YI, Kinoshita H, Nihira T (2004) Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Kitasatospora setae, a bafilomycin B1 producer. Arch Microbiol 181(4):294–298. https://doi.org/10.1007/s00203-004-0654-8

    Article  CAS  PubMed  Google Scholar 

  27. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987. https://doi.org/10.1016/j.cell.2015.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the National Key Research and Development Program of China (No. 2019YFA0904800). Meanwhile, this work was financially supported by an education cooperation fund from the Yihai Kerry Arawana Holdings Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [XT, JC]; methodology: [FX, XZ]; formal analysis and investigation: [FX, XZ, JW]; writing—original draft preparation: [FX, XZ]; writing—review and editing: [XK, LL, XT, JC]; funding acquisition: [XT, JC]; supervision: [XT, JC].

Corresponding authors

Correspondence to Xiwei Tian or Ju Chu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 250 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhang, X., Liu, L. et al. Engineering the methyltransferase through inactivation of the genK and genL leads to a significant increase of gentamicin C1a production in an industrial strain of Micromonospora echinospora 49-92S. Bioprocess Biosyst Eng 45, 1693–1703 (2022). https://doi.org/10.1007/s00449-022-02774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02774-0

Keywords

Navigation