Skip to main content

Evaluation of Saccharomyces cerevisiae modified via CRISPR/Cas9 as a cellulosic platform microorganism in simultaneously saccharification and fermentation processes

Abstract

The nonrenewable character and deleterious effects of fossil fuels foster the need for cleaner and more inexhaustible energy sources, such as bioethanol. Especially from lignocellulosic biomasses. However, the economic viability of this product in the market depends on process optimization and cost reduction. This research applied a sequential experimental project to investigate the process of enzymatic saccharification and simultaneous fermentation to produce ethanol with sugarcane bagasse. The differential of the work was the application of the strain of Saccharomyces cerevisiae AGY001 which was improved by evolutionary engineering to become thermotolerant and by a heterologous expression based on genomic integration by CRISPR/Cas9 to produce endoglucanase and β-glucosidase (AsENDO-AsBGL). The maximum ethanol yield found was 89% of the maximum theoretical yield (released sugars), obtained at temperature concentrations, sugarcane bagasse and inoculum at 40 °C, 16.5%, and 4.0 g/L, respectively (12.5 FPU/g bagasse). The mathematical model obtained can predict approximately 83% of the data set with 95% confidence. Therefore, these findings demonstrated the potential of sugarcane bagasse and S. cerevisiae AGY001 strain (CRISPR/Cas9 modified) in bioethanol production without the need for impractical selection media on an industrial scale, in addition to providing useful insights for the development of SSF processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig.4

References

  1. Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, Nepomuceno AL, Molinari HBC, Bon EPS (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor 1:65–76

    Article  CAS  Google Scholar 

  2. Santos CI, Silva CC, Mussatto SI, Osseweijer P, van der Wielen LAM, Posada JA (2017) Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment. Renew Energy. https://doi.org/10.1016/j.renene.2017.05.011

    Article  Google Scholar 

  3. Althuri A, Banerjee R (2019) Separate and simultaneous saccharification and fermentation of a pretreated mixture of lignocellulosic biomass for ethanol production. Biofuels. Taylor & Francis 10:61–72. https://doi.org/10.1080/17597269.2017.1409059

    Article  CAS  Google Scholar 

  4. Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Costa AC, Rocha GJM, Ienczak JL (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221

    Article  CAS  Google Scholar 

  5. Zhang C, Wen H, Chen C, Cai D, Fu C, Li P, Qin P (2019) Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk. Renew Energy 134:44–53. https://doi.org/10.1016/j.renene.2018.11.005

    Article  CAS  Google Scholar 

  6. Choudhary J, Singh S, Nain L (2017) Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng 123:342–6. https://doi.org/10.1016/j.jbiosc.2016.10.007

    Article  PubMed  CAS  Google Scholar 

  7. Chen X, Kuhn E, Jennings EW, Nelson R, Tao L, Zhang M, Tucker MP (2016) DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L-1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or c. Energy Environ Sci 9:1237–45

    Article  CAS  Google Scholar 

  8. Erdei B, Galbe M, Zacchi G (2013) Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass Bioenergy. https://doi.org/10.1016/j.biombioe.2013.05.032

    Article  Google Scholar 

  9. dos Santos LV, de Barros Grassi MC, Gallardo JCM, Pirolla RAS, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo ELO, Drrezza AL, Missawa SK, Teixeira GS, Lunadi I, Bressiani J, Pereira GAG (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57. https://doi.org/10.1089/ind.2015.0017

    Article  CAS  Google Scholar 

  10. Shahsavarani H, Hasegawa D, Yokota D, Sugiyama M, Kaneko Y, Boonchird C, Harashima S (2013) Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J Biosci Bioeng. Elsevier Ltd 115:20–23. https://doi.org/10.1016/j.jbiosc.2012.07.018

    Article  CAS  Google Scholar 

  11. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47:1452–9. https://doi.org/10.1016/j.procbio.2012.05.016

    Article  CAS  Google Scholar 

  12. Enzimas um custo alto do processo de hidrólise. AGENCIA USP. 2017. Http:// www.usp.br/agen/?p=206384. Accessed on 20 abril 2021.

  13. Berlin A, Gilkes N, Kilburn D, Bura R, Markov A, Skomarovsky A et al (2005) Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates - evidence for the role of accessory enzymes. Enzyme Microb Technol 37:175–184

    Article  CAS  Google Scholar 

  14. Wickramasinghe GHIM, Rathnayake PPAMSI, Chandrasekharan NV, Weerasinghe MSS, Wijesundera RLC, Wijesundera WSS (2017) Trichoderma virens β-glucosidase i (BGLI) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies. BMC Microbiol 17:1–12

    Article  CAS  Google Scholar 

  15. Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  Google Scholar 

  16. Reis VCB, Nicola AM, Neto ODSO, Batista VDF, Moraes LMPD, Torres FAG (2012) Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol 39:1673–83

    Article  CAS  Google Scholar 

  17. Wang L, Luo Z, Shahbazi A (2013) Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Ind Crops Prod 42:280–91. https://doi.org/10.1016/j.indcrop.2012.06.005

    Article  CAS  Google Scholar 

  18. Jugwanth Y, Sewsynker-Sukai Y, Gueguim Kana EB (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel 262:116552. https://doi.org/10.1016/j.fuel.2019.116552

    Article  CAS  Google Scholar 

  19. Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, Gueguim Kana EB (2020) Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renew Energy 146:1031–40. https://doi.org/10.1016/j.renene.2019.07.042

    Article  CAS  Google Scholar 

  20. Pratto B, Suzana M, Aparecida A, Engineering C, Program G, Luís-km RW et al (2020) Bioresource technology experimental optimization and techno-economic analysis of bioethanol production by simultaneous saccharification and fermentation process using sugarcane straw. Bioresour Technol 297:122494. https://doi.org/10.1016/j.biortech.2019.122494

    Article  PubMed  CAS  Google Scholar 

  21. de Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB (2017) Comparison of strategies for the simultaneous saccharification and fermentation of cashew apple bagasse using a thermotolerant Kluyveromyces marxianus to enhance cellulosic ethanol production. Chem Eng J 307:939–47. https://doi.org/10.1016/j.cej.2016.09.006

    Article  CAS  Google Scholar 

  22. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol 33:1091–107. https://doi.org/10.1016/j.biotechadv.2014.12.002

    Article  CAS  Google Scholar 

  23. López-Linares JC, Romero I, Cara C, Ruiz E, Castro E, Moya M (2014) Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 89:104–110

    Article  CAS  Google Scholar 

  24. De Melo AHF, Lopes AMM, Dezotti N, Santos IL, Teixeira GS, Goldbeck R (2020) Evolutionary engineering of two robust Brazilian industrial yeast strains for thermotolerance and second-generation biofuels. Ind Biotechnol 16:91–98

    Article  CAS  Google Scholar 

  25. Lopes AMM, Félix de Mélo AH, Procópio DP, Teixeira GS, Carazzolle MF, de Carvalho LM, Carvalho LM, Adelantado N, Pereira GAG, Ferrer P, Maugeri-Filho F, Goldbeck R (2020) Genome sequence of acremonium strictum AAJ6 strain isolated from the Cerrado biome in Brazil and CAZymes expression in thermotolerant industrial yeast for ethanol production. Process Biochem 98:139–50. https://doi.org/10.1016/j.procbio.2020.07.029

    Article  CAS  Google Scholar 

  26. Stovicek V, Borodina I, Forster J (2015) CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22. https://doi.org/10.1016/j.meteno.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Farias D, Maugeri-Filho F (2019) Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J. 147:29–38. https://doi.org/10.1016/j.bej.2019.03.020

    Article  CAS  Google Scholar 

  28. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Natl Renew Energy Lab 3(9):1–5

    Google Scholar 

  29. Rocha GJM, Pereira TT, Vicente VMN, Celente V (2019) Caracterização Química de Bagaço e Palha de Cana-de-açúcar. Brazilian Biorenewables National Laboratory. https://lnbr.cnpem.br/wp-content/uploads/2020/12/Relatorio-Tecnico-Parcial-1_Apendice-2.pdf. Accessed 18 Apr 2022

  30. Farias D, de Mélo AHF, da Silva MF, Bevilaqua GC, Ribeiro DG, Goldbeck R et al (2022) New biotechnological opportunities for C5 sugars from lignocellulosic materials. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2022.100956

    Article  Google Scholar 

  31. dos Santos L, Amaral GG, Lima CM, Bastos TA, Santos AC, Paula-Elias FC, Santos CCAA, Almeida AF (2021) Hydrolysis of pineapple crown biomass by cellulolytic enzymes produced by Fusarium oxysporum. Sci Plena 17:1–11

    Article  CAS  Google Scholar 

  32. Ejaz U, Shazad Y, Hassan M, Sohail M (2021) Statistical optimization of saccharificaion of carbohydrate content of alkali pretreated sugarcane bagasse by enzyme cocktail produced by Bacillus vallismortis MH 1 and Bacillus aestuarii UE25. Carbohydr Polym Technol Appl 2:100174. https://doi.org/10.1016/j.carpta.2021.100174

    Article  CAS  Google Scholar 

  33. Shadbahr J, Zhang Y, Khan F, Hawboldt K (2018) Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production. Renew Energy 125:100–7. https://doi.org/10.1016/j.renene.2018.02.106

    Article  CAS  Google Scholar 

  34. Cavalaglio G, Gelosia M, Ingles D, Pompili E, D’Antonio S, Cotana F (2016) Response surface methodology for the optimization of cellulosic ethanol production from phragmites australis through pre-saccharification and simultaneous saccharification and fermentation. Ind Crops Prod 83:431–437

    Article  CAS  Google Scholar 

  35. Dong C, Wang Y, Zhang H, Leu SY (2018) Feasibility of high-concentration cellulosic bioethanol production from undetoxified whole monterey pine slurry. Bioresour Technol 250:102–9. https://doi.org/10.1016/j.biortech.2017.11.029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by São Paulo Research Foundation – FAPESP/Brazil (grant numbers 2019/08542-7, 2016/04602-3, 2015/20630-4). This work was supported by the Brazilian Science and Research Foundation - CNPq, Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil) (Finance code 001). R. Goldbeck thanks CNPQ for the productivity Grant (307014/2020-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosana Goldbeck.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Mélo, A.H.F., Nunes, A.L., Carvalho, P.H. et al. Evaluation of Saccharomyces cerevisiae modified via CRISPR/Cas9 as a cellulosic platform microorganism in simultaneously saccharification and fermentation processes. Bioprocess Biosyst Eng (2022). https://doi.org/10.1007/s00449-022-02765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-022-02765-1

Keywords

  • Bioprocesses
  • SSF
  • Bagasse sugarcane
  • Design experiment
  • CRISPR/Cas9