Skip to main content

Integrated adsorption and biological removal of the emerging contaminants ibuprofen, naproxen, atrazine, diazinon, and carbaryl in a horizontal tubular bioreactor

Abstract

Groundwater and surface water bodies may have contaminants from urban, industrial, or agricultural wastewater, including emerging contaminants (ECs) or micropollutants (MPs). Frequently, they are not efficiently removed by microbial action due to their minimal concentration in water and the low microbiota affinity for complex compounds. This work developed a process allowing the adsorption of contaminants and their simultaneous biodegradation using horizontal tubular fixed-bed biofilm reactors (HTR). Each HTR has two zones: an equalizer-aerator of the incoming liquid flow and a fixed bed zone. This zone was packed with a mixed support material consisting of granular bio-activated carbon (Bio-GAC) and porous material that increases the bed permeability, thus decreasing the pressure drop. Five microbial communities were acclimated and immobilized in granular activated carbon (GAC) to obtain different specialized Bio-GAC particles able to remove the micropollutants ibuprofen, naproxen, atrazine, carbaryl, and diazinon. The Bio-GAC particles were transferred to HTRs continuously run in microaerophilia at several MPs loading rates. Under these conditions, the removal efficiencies of MPs, except atrazine and carbaryl, were around 100%

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tröger R, Klöckner P, Ahrens L, Wiberg K (2018) Micropollutants in drinking water from source to tap—method development and application of a multi-residue screening method. Sci Total Environ 627:1404–1432. https://doi.org/10.1016/j.scitotenv.2018.01.277

    CAS  Article  PubMed  Google Scholar 

  2. Yu Z, Peldszus S, Huck PM (2008) Adsorption characteristics of selected pharmaceuticals and an endocrine-disrupting compound—naproxen, carbamazepine and nonylphenol—on activated carbon. Water Res 42:2873–2882. https://doi.org/10.1016/j.watres.2008.02.020

    CAS  Article  PubMed  Google Scholar 

  3. Blánquez P, Hom-Díaz A, Vicent T, Guieysse B (2021) Microalgae-based processes for the removal of pharmaceuticals in wastewater. In: Rodriguez-Mozaz S, Blánquez Cano P, Sarrà Adroguer M (eds) Removal and degradation of pharmaceutically active compounds in wastewater treatment Hdb Env Chem, vol 108. Springer, pp 191–222. https://doi.org/10.1007/698_2020_682

    Chapter  Google Scholar 

  4. Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596–597:303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102

    CAS  Article  PubMed  Google Scholar 

  5. Manstein Y, Scozzari A (2016) Pollution detection by electromagnetic induction and electrical resistivity methods: an introductory note with case studies. In: Scozzari A, Dotsika E (eds) Threats to the quality of groundwater resources: prevention and control, Hdb Env Chem, vol 40. Springer, Heidelberg, pp 225–238. https://doi.org/10.1007/698_2014_277

    Chapter  Google Scholar 

  6. Rocha LS, Pereira D, Sousa É, Otero M, Esteves VI, Calisto V (2020) Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: a review. Sci Total Environ 718:137272. https://doi.org/10.1016/j.scitotenv.2020.137272

    CAS  Article  PubMed  Google Scholar 

  7. Feng Z, Chen H, Li H, Yuan R, Wang F, Chen Z, Zhou B (2020) Preparation, characterization, and application of magnetic activated carbon for treatment of biologically treated papermaking wastewater. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.136423

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng X, Ji Q, Sun DZ, Chen J, He X, Li HS, Yang S, Zhang L (2022) A comparative study on adsorption behavior of iodinated X-ray contrast media iohexol and amidotrizoic acid by magnetic-activated carbon. Environ Sci Pollut Res 29:45404–45420. https://doi.org/10.1007/s11356-022-19127-9

    CAS  Article  Google Scholar 

  9. Shen Y, Jiang B, Xing Y (2021) Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants. Environ Sci Pollut Res 28(7):7599–7620. https://doi.org/10.1007/s11356-020-11877-8

    CAS  Article  Google Scholar 

  10. Devault DA, Amalric L, Bristeau Cruz J, Tapie N, Karolak S, Budzinski H, Levi Y (2021) Removal efficiency of emerging micropollutants in biofilter wastewater treatment plants in tropical areas. Environ Sci Pollut Res 28:10940–10966. https://doi.org/10.1007/s11356-020-10868-z

    CAS  Article  Google Scholar 

  11. Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L (2020) Micropollutants in treated wastewater. Ambio 49:487–503. https://doi.org/10.1007/s13280-019-01219-5

    Article  PubMed  Google Scholar 

  12. Fu W, Fu J, Li X, Li B, Wang Z (2019) Occurrence and fate of PPCPs in typical drinking water treatment plants in China. Environ Geochem Health 41:5–15. https://doi.org/10.1007/s10653-018-0181-1

    CAS  Article  PubMed  Google Scholar 

  13. Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070)

    CAS  Article  PubMed  Google Scholar 

  14. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, Ackermann M, Hahn AS, Crowe SA, Doebeli M, Parfrey LW (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  15. Thacker WE, Snoeyink VL, Crittenden JC (1983) Desorption of compounds during operation of GAC adsorption systems. J Am Water Works Assoc 75(3):144–149

    CAS  Article  Google Scholar 

  16. Gupta R, Bansal A (2013) Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids. Bioprocess Biosyst Eng 36:1011–1018. https://doi.org/10.1007/s00449-012-0853-7

    CAS  Article  PubMed  Google Scholar 

  17. Norouzi AM, Siavashi M, Etebari AO, MK, (2020) Experimental estimation of axial–vertical flow permeability through a packed bed of granular activated carbon. J Therm Anal Calorim 141:1493–1508. https://doi.org/10.1007/s10973-020-09918-y

    CAS  Article  Google Scholar 

  18. Baghapour B, Rouhani M, Sharafian A, Kalhori SB, Bahrami M (2018) A pressure drop study for packed bed adsorption thermal energy storage. Appl Therm Eng 138:731–739. https://doi.org/10.1016/j.applthermaleng.2018.03.098

    CAS  Article  Google Scholar 

  19. Castañón-González JH, Galíndez-Mayer J, Ruiz-Ordaz N, Rocha-Martínez L, Peña-Partida JC, Marrón-Montiel E, Santoyo-Tepole F (2016) Biodegradation of the herbicide diuron in a packed bed channel and a double biobarrier with distribution of oxygenated liquid by airlift devices: influence of oxygen limitation. New Biotechnol 33(1):7–15. https://doi.org/10.1016/j.nbt.2015.07.002

    CAS  Article  Google Scholar 

  20. Salazar-Huerta MA, Ruiz-Ordaz N, Galíndez-Mayer J-M, J, Juárez-Ramírez, C (2019) Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor. Bioprocess Biosyst Eng 42:17–27. https://doi.org/10.1007/s00449-018-2009-x

    CAS  Article  PubMed  Google Scholar 

  21. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S (2013) Experimental determination of the volumetric mass transfer coefficient. J Chem Technol Metall 48(4):351–356

    Google Scholar 

  22. Gómez-De Jesús A, Romano-Baez FJ, Leyva-Amezcua L, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez-Mayer J (2009) Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J Hazard Mater 161:1140–1149. https://doi.org/10.1016/j.jhazmat.2008.04.077

    CAS  Article  PubMed  Google Scholar 

  23. Jiménez-Silva VA, Santoyo-Tepole F, Ruiz-Ordaz N, Galíndez-Mayer J (2019) Study of the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludge. Process Saf Environ 123:140–149

    Article  Google Scholar 

  24. Lyons WC (2010) Basic principles, definitions, and data. In: Lyons WC (ed) Working guide to reservoir engineering. Gulf Professional Publishing, Elsevier Inc, Amsterdam. https://doi.org/10.1016/B978-1-85617-824-2.00001-0

    Chapter  Google Scholar 

  25. Patel PN, Samanthula G, Shrigod V, Modh SC, Chaudhari JR (2013) RP-HPLC Method for determination of several NSAIDs and their combination drugs. Chromatogr Res Int. https://doi.org/10.1155/2013/242868

    Article  Google Scholar 

  26. Hester ER, Jetten MSM, Welte CU, Lücker S (2019) Metabolic overlap in environmentally diverse microbial communities. Front Genet. https://doi.org/10.3389/fgene.2019.00989

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem. https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  28. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38. https://doi.org/10.1016/j.jcis.2008.01.047

    CAS  Article  PubMed  Google Scholar 

  29. Mestre A, Pires J, Nogueira J, Carvalho A (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45(10):1979–1988. https://doi.org/10.1016/j.carbon.2007.06.005

    CAS  Article  Google Scholar 

  30. Khazri H, Ghorbel-Abid I, Kalfat R, Trabelsi-Ayadi M (2017) Removal of ibuprofen, naproxen, and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Appl Water Sci 7:3031–3040. https://doi.org/10.1007/s13201-016-0414-3

    CAS  Article  Google Scholar 

  31. Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manag 190:274–282. https://doi.org/10.1016/j.jenvman.2016.12.073

    CAS  Article  Google Scholar 

  32. Phasuphan W, Praphairaksit N, Imyima A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J Mol Liq 294:111554. https://doi.org/10.1016/j.molliq.2019.111554

    CAS  Article  Google Scholar 

  33. Lupul I, Yperman J, Carleer R, Gryglewicz G (2015) Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry. Adsorption 21:489–498. https://doi.org/10.1007/s10450-015-9689-1

    CAS  Article  Google Scholar 

  34. Wei X, Wua Z, Wu Z, Ye B-C (2018) Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems. Powder Technol 329:207–216. https://doi.org/10.1016/j.powtec.2018.01.060

    CAS  Article  Google Scholar 

  35. Akbarlou Z, Alipour V, Heidari M, Dindarloo K (2017) Adsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran. Environ Health Eng Manage J 4(2):93–99. https://doi.org/10.15171/EHEM.2017.13

    CAS  Article  Google Scholar 

  36. Jung SY, Sim H, Choi JA (2013) Comparative study on adsorptive characteristics of diazinon in water by various adsorbents. Bull Korean Chem Soc 34(9):2753. https://doi.org/10.5012/bkcs.2013.34.9.2753

    CAS  Article  Google Scholar 

  37. Sathishkumar M, Choi JG, Ku CS, Vijayaraghavan K, Binupriya AR, Yun SE (2008) Carbaryl sorption by porogen-treated banana pith carbon. Adsorpt Sci Technol 26:679–686. https://doi.org/10.1260/026361708788251367

    CAS  Article  Google Scholar 

  38. Galíndez-Nájera SP, Llamas-Martínez MA, Ruiz-Ordaz N, Juárez-Ramírez C, Mondragón-Parada ME, Ahuatzi-Chacón D, Galíndez-Mayer J (2009) Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor. J Ind Microbiol Biotechnol 36:275–284. https://doi.org/10.1007/s10295-008-0496-5

    CAS  Article  PubMed  Google Scholar 

  39. Zhou Y, Ke Z, Ye H, Hong M, Xu Y, Zhang M, Jiang W, Hong Q (2020) Hydrolase CehA and a novel two-component 1-naphthol hydroxylase CehC1C2 are responsible for the two initial steps of carbaryl degradation in Rhizobium sp X9. J Agric Food Chem 68(50):14739–14747. https://doi.org/10.1021/acs.jafc.0c03845

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (FORDECYT/PRONACES Grant Number 6656) and Instituto Politécnico Nacional, (Grant SIP-IPN, 20200997). The authors thank COFAA-IPN and SNI-Conacyt for the scholarships awarded to NRO, FST, JGM CJR, and MGM; to Conacyt and SIP-IPN for a fellowship to IAM and SGJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nora Ruiz-Ordaz or Juvencio Galíndez-Mayer.

Ethics declarations

Conflict of interest

The author reports no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambriz-Mexicano, I., González-Juárez, S., Ruiz-Ordaz, N. et al. Integrated adsorption and biological removal of the emerging contaminants ibuprofen, naproxen, atrazine, diazinon, and carbaryl in a horizontal tubular bioreactor. Bioprocess Biosyst Eng 45, 1547–1557 (2022). https://doi.org/10.1007/s00449-022-02764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02764-2

Keywords

  • Bioactivated carbon
  • Ibuprofen
  • Naproxen
  • Atrazine
  • Diazinon
  • Carbaryl
  • Tubular bioreactor