Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15010016
Article
PubMed
PubMed Central
Google Scholar
Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117. https://doi.org/10.1016/j.apenergy.2009.04.036
CAS
Article
Google Scholar
Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrogen Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093
CAS
Article
Google Scholar
Basak N, Jana AK, Das D (2016) CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrogen Energy 41:7301–7317. https://doi.org/10.1016/j.ijhydene.2016.02.126
CAS
Article
Google Scholar
Basak N, Jana AK, Das D (2021) Photofermentative biohydrogen generation from organic acids by Rhodobacter sphaeroides OU 001: Computational fluid dynamics modeling of hydrodynamics and temperature. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2151
Article
PubMed
Google Scholar
Barsanti N, Matteucci F (1854) Obtaining motive power by the explosion of gases, 1072, Patent B, Patent Express, The British Library, London
Das SR, Basak N (2020) Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective. Bioprocess Biosyst Eng 44:1–25. https://doi.org/10.1007/s00449-020-02422-5
CAS
Article
PubMed
Google Scholar
Rao R, Basak N (2021) Process optimization and mathematical modelling of photo-fermentative hydrogen production from dark fermentative cheese whey effluent by Rhodobacter sphaeroides OU 001 in 2-L cylindrical bioreactor. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01377-1
Article
Google Scholar
Rao R, Basak N (2021) Fermentative molecular biohydrogen production from cheese whey: present prospects & future strategy. Appl Biochem Biotechnol 193:2297–2330. https://doi.org/10.1007/s12010-021-03528-6
CAS
Article
PubMed
Google Scholar
Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045
CAS
Article
Google Scholar
Rao R, Basak N (2021) Optimization and modelling of dark fermentative hydrogen production from cheese whey by Enterobacter aerogenes 2822. Int J Hydrogen Energy 46:1777–1800. https://doi.org/10.1016/j.ijhydene.2020.10.142
CAS
Article
Google Scholar
Das SR, Basak N (2022) Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02588-w
Article
Google Scholar
Reaño RL (2020) Assessment of environmental impact and energy performance of rice husk utilization in various biohydrogen production pathways. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122590
Article
PubMed
Google Scholar
Reaño RL, Halog A (2020) Analysis of carbon footprint and energy performance of biohydrogen production through gasification of different waste agricultural biomass from the Philippines. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-01151-9
Article
Google Scholar
Jung K-W, Kim D-H, Kim S-H, Shin H-S (2011) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102:8612–8620. https://doi.org/10.1016/j.biortech.2011.03.056
CAS
Article
PubMed
Google Scholar
Brar KK, Cortez AA, Pellegrini VOA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK (2022) An overview on progress, advances, and future outlook for biohydrogen production technology. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.01.156
Article
Google Scholar
Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: A review and prognosis. Int J Hydrogen Energy 37:15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072
CAS
Article
Google Scholar
Park J-H, Chandrasekhar K, Jeon B-H, Jang M, Liu Y, Kim S-H (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124304
Article
PubMed
Google Scholar
Bakonyi P, Peter J, Koter S, Mateos R, Kumar G, Koók L, Rózsenberszki T, Pientka Z, Kujawski W, Kim S-H, Nemestóthy N, Bélafi-Bakó K, Pant D (2020) Possibilities for the biologically-assisted utilization of CO2-rich gaseous waste streams generated during membrane technological separation of biohydrogen. J CO2 Util 36:231–243. https://doi.org/10.1016/j.jcou.2019.11.008
CAS
Article
Google Scholar
Lepage T, Kammoun M, Schmetz Q, Richel A (2021) Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105920
Article
Google Scholar
Lee D-J, Show K-Y, Su A (2011) Dark fermentation on biohydrogen production: pure culture. Bioresour Technol 102:8393–8402. https://doi.org/10.1016/j.biortech.2011.03.041
CAS
Article
PubMed
Google Scholar
Han W, Hu YY, Li SY, Li FF, Tang JH (2016) Biohydrogen production from waste bread in a continuous stirred tank reactor: a techno-economic analysis. Biores Technol 221:318–323. https://doi.org/10.1016/j.biortech.2016.09.055
CAS
Article
Google Scholar
Li Y-C, Liu Y-F, Chu C-Y, Chang P-L, Hsu C-W, Wu S-Y (2012) Techno-economic evaluation of biohydrogen production from wastewater and agricultural waste. Int J Hydrogen Energy 37:15704–15710. https://doi.org/10.1016/j.ijhydene.2012.05.043
CAS
Article
Google Scholar
Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrogen Energy 39:7476–7485. https://doi.org/10.1016/j.ijhydene.2013.08.079
CAS
Article
Google Scholar
Vendruscolo F (2014) Starch: a potential substrate for biohydrogen production. Int J Energy Res 39:293–302. https://doi.org/10.1002/er.3224
CAS
Article
Google Scholar
Rao R, Basak N (2020) Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: the present state of the art. Biotechnol Appl Biochem 68:421–444. https://doi.org/10.1002/bab.1964
CAS
Article
PubMed
Google Scholar
Aruwajoye GS, Kassim A, Saha AK, Kana EBG (2020) Prospects for the improvement of bioethanol and biohydrogen production from mixed starch-based agricultural wastes. Energies 13:6609. https://doi.org/10.3390/en13246609
CAS
Article
Google Scholar
Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043
CAS
Article
Google Scholar
Soares JF, Confortin TC, Todero I, Mayer FD, Mazutti MA (2020) Dark fermentative biohydrogen production from lignocellulosic biomass: technological challenges and future prospects. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109484
Article
Google Scholar
Ergal İ, Fuchs W, Hasibar B, Thallinger B, Bochmann G, Rittmann SK-MR (2018) The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv 36:2165–2186. https://doi.org/10.1016/j.biotechadv.2018.10.005
CAS
Article
PubMed
Google Scholar
Sivagurunathan P, Sen B, Lin C-Y (2014) Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int J Hydrogen Energy 39:19232–19241. https://doi.org/10.1016/j.ijhydene.2014.03.260
CAS
Article
Google Scholar
Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B (2019) Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem 835:106–113. https://doi.org/10.1016/j.jelechem.2019.01.028
CAS
Article
Google Scholar
Tang J, Yuan Y, Guo W-Q, Ren N-Q (2012) Inhibitory effects of acetate and ethanol on biohydrogen production of Ethanoligenens harbinense B49. Int J Hydrogen Energy 37:741–747. https://doi.org/10.1016/j.ijhydene.2011.04.067
CAS
Article
Google Scholar
Tondro H, Musivand S, Zilouei H, Bazarganipour M, Zargoosh K (2020) Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2020.105818
Article
Google Scholar
Zhang T, Jiang D, Zhang H, Jing Y, Tahir N, Zhang Y, Zhang Q (2020) Comparative study on bio-hydrogen production from corn stover: photo-fermentation, dark-fermentation and dark-photo co-fermentation. Int J Hydrogen Energy 45:3807–3814. https://doi.org/10.1016/j.ijhydene.2019.04.170
CAS
Article
Google Scholar
Chandrasekhar K, Mohan SV (2014) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy 39:11411–11422. https://doi.org/10.1016/j.ijhydene.2014.05.035
CAS
Article
Google Scholar
Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. https://doi.org/10.1016/j.tibtech.2009.02.004
CAS
Article
PubMed
Google Scholar
Basak B, Fatima A, Jeon B-H, Ganguly A, Chatterjee PK, Dey A (2018) Process kinetic studies of biohydrogen production by co-fermentation of fruit-vegetable wastes and cottage cheese whey. Energy Sustain Dev 47:39–52. https://doi.org/10.1016/j.esd.2018.08.004
Article
Google Scholar
Yang C-Y, Fang TJ (2014) Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw. Biores Technol 164:198–202. https://doi.org/10.1016/j.biortech.2014.05.004
CAS
Article
Google Scholar
Kaur K, Phutela UG (2018) Morphological and structural changes in paddy straw influenced by alkali and microbial pretreatment. Detritus. https://doi.org/10.31025/2611-4135/2018.13686
Article
Google Scholar
Singh T, Alhazmi A, Mohammad A, Srivastava N, Haque S, Sharma S, Singh R, Yoon T, Gupta VK (2021) Integrated biohydrogen production via lignocellulosic waste: opportunity, challenges & future prospects. Biores Technol. https://doi.org/10.1016/j.biortech.2021.125511
Article
Google Scholar
Zhang J, Kong C, Yang M, Zang L (2020) Comparison of calcium oxide and calcium peroxide pretreatments of wheat straw for improving biohydrogen production. ACS Omega 5:9151–9161. https://doi.org/10.1021/acsomega.9b04368
CAS
Article
PubMed
PubMed Central
Google Scholar
Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel 134:389–399. https://doi.org/10.1016/j.fuel.2014.05.074
CAS
Article
Google Scholar
Alibardi L, Cossu R (2016) Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Manag 47:69–77. https://doi.org/10.1016/j.wasman.2015.07.049
CAS
Article
PubMed
Google Scholar
Gadhe A, Sonawane SS, Varma MN (2014) Evaluation of ultrasonication as a treatment strategy for enhancement of biohydrogen production from complex distillery wastewater and process optimization. Int J Hydrogen Energy 39:10041–10050. https://doi.org/10.1016/j.ijhydene.2014.04.153
CAS
Article
Google Scholar
Gadhe A, Sonawane SS, Varma MN (2015) Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int J Hydrogen Energy 40:9942–9951. https://doi.org/10.1016/j.ijhydene.2015.06.098
CAS
Article
Google Scholar
Saleem A, Umar H, Shah TA, Tabassum R (2020) Fermentation of simple and complex substrates to biohydrogen using pure Bacillus cereus RTUA and RTUB strains. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100704
Article
Google Scholar
Wang H, Fang M, Fang Z, Bu H (2010) Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Biores Technol 101:8731–8735. https://doi.org/10.1016/j.biortech.2010.06.131
CAS
Article
Google Scholar
Rossi DM, da Costa JB, de Souza EA, Peralba MdCR, Samios D, Ayub MAZ (2011) Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Int J Hydrogen Energy 36:4814–4819. https://doi.org/10.1016/j.ijhydene.2011.01.005
CAS
Article
Google Scholar
Wang D, Wang Y, Liu X, Xu Q, Yang Q, Li X, Zhang Y, Liu Y, Wang Q, Ni B-J, Li H (2019) Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Biores Technol 283:316–325. https://doi.org/10.1016/j.biortech.2019.03.090
CAS
Article
Google Scholar
Pachapur VL, Kutty P, Pachapur P, Brar SK, Bihan YL, Galvez-Cloutier R, Buelna G (2019) Seed pretreatment for increased hydrogen production using mixed-culture systems with advantages over pure-culture systems. Energies. https://doi.org/10.3390/en12030530
Article
Google Scholar
Karim A, Islam MA, Mishra P, Yousuf A, Faizal CKM, Khan I (2021) Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2021.111519
Article
Google Scholar
Mori K, Tsurumaru H, Harayama S (2010) Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430. https://doi.org/10.1016/j.jbiosc.2010.04.012
CAS
Article
PubMed
Google Scholar
Liou JS-C, Madsen EL (2008) Microbial ecological processes: aerobic/anaerobic. Encycl Ecol. https://doi.org/10.1016/B978-008045405-4.00254-8
Article
Google Scholar
Borja R (2011) Biogas production. Compr Biotechnol 2:785–798. https://doi.org/10.1016/B978-0-08-088504-9.00126-4
Article
Google Scholar
Su X, Zhao W, Xia D (2018) The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol Biofuels. https://doi.org/10.1186/s13068-018-1237-2
Article
PubMed
PubMed Central
Google Scholar
Montecchio D, Yuan Y, Malpei F (2018) Hydrogen production dynamic during cheese whey dark fermentation: new insights from modelization. Int J Hydrogen Energy 43:17488–17601. https://doi.org/10.1016/j.ijhydene.2018.07.146
CAS
Article
Google Scholar
Wan J, Jing Y, Zhang S, Angelidaki I, Luo G (2016) Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: focusing on homoacetogenesis. Water Res 102:524–532. https://doi.org/10.1016/j.watres.2016.07.002
CAS
Article
PubMed
Google Scholar
Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106. https://doi.org/10.1016/j.rser.2014.04.047
CAS
Article
Google Scholar
Gonzales RR, Sivagurunathan P, Parthiban A, Kim S-H (2016) Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int Biodeterior Biodegrad 113:22–27. https://doi.org/10.1016/j.ibiod.2016.04.016
CAS
Article
Google Scholar
Quéméneur M, Hamelin J, Barakat A, Steyer J-P, Carrère H, Trably E (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrogen Energy 37:3150–3159. https://doi.org/10.1016/j.ijhydene.2011.11.033
CAS
Article
Google Scholar
Muñoz-Páez KM, Alvarado-Michi EL, Buitrón G, Valdez-Vazquez I (2019) Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. Int J Hydrogen Energy 44:2289–2297. https://doi.org/10.1016/j.ijhydene.2018.04.139
CAS
Article
Google Scholar
Khalaf RA, Alhusban AA, Al-Shalabi E, Al-Sheikh I, Sabbah DA (2019) Isolation and structure elucidation of bioactive polyphenols. Stud Nat Prod Chem. https://doi.org/10.1016/B978-0-12-817901-7.00010-1
Article
Google Scholar
Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Biores Technol 196:250–255. https://doi.org/10.1016/j.biortech.2015.07.097
CAS
Article
Google Scholar
Sharma P, Melkania U (2018) Effect of phenolic compounds on hydrogen production from municipal solid waste. Waste Manag 78:115–123. https://doi.org/10.1016/j.wasman.2018.05.039
CAS
Article
PubMed
Google Scholar
Palomo-Briones R, Trably E, López-Lozano NE, Celis LB, Méndez-Acosta HO, Bernet N, Razo-Flores E (2018) Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Appl Microbiol Biotechnol 102:2465–2475. https://doi.org/10.1007/s00253-018-8737-7
CAS
Article
PubMed
Google Scholar
Antonopoulou G, Gavala HN, Skiadas IV, Lyberatos G (2011) Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int J Hydrogen Energy 36:4843–4851. https://doi.org/10.1016/j.ijhydene.2011.01.077
CAS
Article
Google Scholar
Jayasinghearachchi HS, Singh S, Sarma PM, Aginihotri A, Lal B (2010) Fermentative hydrogen production by new marine Clostridium amygdalinum strain C9 isolated from offshore crude oil pipeline. Int J Hydrogen Energy 35:6665–6673. https://doi.org/10.1016/j.ijhydene.2010.04.034
CAS
Article
Google Scholar
Lin C-Y, Shei S-H (2008) Heavy metal effects on fermentative hydrogen production using natural mixed microflora. Int J Hydrogen Energy 33:587–593. https://doi.org/10.1016/j.ijhydene.2007.09.030
CAS
Article
Google Scholar
Ghimire A, Valentino S, Frunzo L, Trably E, Escudié R, Pirozzi F, Lens PNL, Esposito G (2015) Biohydrogen production from food waste by coupling semi-continuous dark-photofermentation and residue post-treatment to anaerobic digestion: a synergy for energy recovery. Int J Hydrogen Energy 40:16045–16055. https://doi.org/10.1016/j.ijhydene.2015.09.117
CAS
Article
Google Scholar
Basak B, Jeon B-H, Kim TH, Lee J-C, Chatterjee PK, Lim H (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110338
Article
Google Scholar
Mishra P, Thakur S, Singh L, Wahid ZA, Sakinah M (2016) Enhanced hydrogen production from palm oil mill effluent using two stage sequential dark and photo fermentation. Int J Hydrogen Energy 41:18431–18440. https://doi.org/10.1016/j.ijhydene.2016.07.138
CAS
Article
Google Scholar
Yin Y, Wang J (2019) Optimization of fermentative hydrogen production by Enterococcus faecium INET2 using response surface methodology. Int J Hydrogen Energy 44:1483–1491. https://doi.org/10.1016/j.ijhydene.2018.11.154
CAS
Article
Google Scholar
Mamimin C, Prasertsan P, Kongjan P, O-Thong S (2017) Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electron J Biotechnol 29:78–85. https://doi.org/10.1016/j.ejbt.2017.07.006
CAS
Article
Google Scholar
Saleem M, Lavagnolo MC, Spagni A (2018) Biological hydrogen production via dark fermentation by using a side-stream dynamic membrane bioreactor: effect of substrate concentration. Chem Eng J 349:719–727. https://doi.org/10.1016/j.cej.2018.05.129
CAS
Article
Google Scholar
Adessi A, De Philippis R, Hallenbeck PC (2011) Combined systems for maximum substrate conversion. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer Science + Business Media, New York. https://doi.org/10.1007/978-1-4614-1208-3_7
Chapter
Google Scholar
Ye R, Jin Q, Bohannan B, Keller JK, Bridgham SD (2014) Homoacetogenesis: A potentially underappreciated carbon pathway in peatlands. Soil Biol Biochem 68:385–391. https://doi.org/10.1016/j.soilbio.2013.10.020
CAS
Article
Google Scholar
Cappai G, Gioannis GD, Muntoni A, Spiga D, Boni MR, Polettini A, Pomi R, Rossi A (2018) Biohydrogen production from food waste: influence of the inoculum-to-substrate ratio. Sustainability. https://doi.org/10.3390/su10124506
Article
Google Scholar
Luo G, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. https://doi.org/10.1002/bit.23122
CAS
Article
PubMed
Google Scholar
Cripa FB, Arantes MK, Sequinel R, Fiorini A, Rosado FR, Alves HJ (2020) Poultry slaughterhouse anaerobic ponds as a source of inoculum for biohydrogen production. J Biosci Bioeng 129:77–85. https://doi.org/10.1016/j.jbiosc.2019.07.006
CAS
Article
PubMed
Google Scholar
Chaganti SR, Kim D-H, Lalman JA (2011) Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production. Int J Hydrogen Energy 36:14141–14152. https://doi.org/10.1016/j.ijhydene.2011.04.161
CAS
Article
Google Scholar
Lazaro CZ, Perna V, Etchebehere C, Varesche MBA (2014) Sugarcane vinasse as substrate for fermentative hydrogen production: the effects of temperature and substrate concentration. Int J Hydrogen Energy 39:6407–6418. https://doi.org/10.1016/j.ijhydene.2014.02.058
CAS
Article
Google Scholar
Dessì P, Porca E, Waters NR, Lakaniemi A-M, Collins G, Lens PNL (2018) Thermophilic versus mesophilic dark fermentation in xylose-fed fluidised bed reactors: biohydrogen production and active microbial community. Int J Hydrogen Energy 43:5473–5485. https://doi.org/10.1016/j.ijhydene.2018.01.158
CAS
Article
Google Scholar
Menezes CAd, Silva EL (2019) Hydrogen production from sugarcane juice in expanded granular sludge bed reactors under mesophilic conditions: the role of homoacetogenesis and lactic acid production. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111586
Article
Google Scholar
Buitrón G, Muñoz-Páez KM, Hernández-Mendoza CE (2019) Biohydrogen production using a granular sludge membrane bioreactor. Fuel 241:954–961. https://doi.org/10.1016/j.fuel.2018.12.104
CAS
Article
Google Scholar
Cazier EA, Trably E, Steyer JP, Escudie R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Biores Technol 190:106–113. https://doi.org/10.1016/j.biortech.2015.04.055
CAS
Article
Google Scholar
Ciranna A, Pawar SS, Santala V, Karp M, Niel EMV (2014) Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure. Microb Cell Fact. https://doi.org/10.1186/1475-2859-13-48
Article
PubMed
PubMed Central
Google Scholar
Laurent B, Serge H, Julien M, Christopher H, Philippe T (2012) Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Proc 29:34–41. https://doi.org/10.1016/J.EGYPRO.2012.09.006
Article
Google Scholar
Ramírez-Morales JE, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G (2015) Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 71:1271–1285. https://doi.org/10.2166/wst.2015.104
CAS
Article
PubMed
Google Scholar
Abreu AA, Tavares F, Alves MM, Pereira MA (2016) Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Biores Technol 219:132–138. https://doi.org/10.1016/j.biortech.2016.07.096
CAS
Article
Google Scholar
Sivalingam V, Haugen T, Wentzel A, Dinamarca C (2021) Effect of elevated hydrogen partial pressure on mixed culture homoacetogenesis. Chem Eng Sci X. https://doi.org/10.1016/j.cesx.2021.100118
Article
Google Scholar
Rao R, Basak N (2022) Sequential dark-photo batch fermentation and kinetic modelling for biohydrogen production using cheese whey as a feedstock. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03958-w
Article
PubMed
PubMed Central
Google Scholar
Li X, Guo L, Liu Y, Wang Y, She Z, Gao M, Zhao Y (2020) Effect of salinity and pH on dark fermentation with thermophilic bacteria pretreated swine wastewater. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111023
Article
PubMed
Google Scholar
Luo G, Xie L, Zou Z, Zhou Q, Wang J-Y (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl Energy 87:3710–3717. https://doi.org/10.1016/j.apenergy.2010.07.004
CAS
Article
Google Scholar
Pakarinen O, Lehtomäki A, Rintala J (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrogen Energy 33:594–601. https://doi.org/10.1016/j.ijhydene.2007.10.008
CAS
Article
Google Scholar
Abdallah R, Djelal H, Amrane A, Sayed W, Fourcade F, Thierry L, Geneste F, Taha S, Floner D (2016) Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electroreduction. Int J Hydrogen Energy 41:5445–5455. https://doi.org/10.1016/j.ijhydene.2016.02.030
CAS
Article
Google Scholar
Elreedy A, Tawfik A (2015) Effect of hydraulic retention time on hydrogen production from the dark fermentation of petrochemical effluents contaminated with ethylene glycol. Energy Procedia 74:1071–1078. https://doi.org/10.1016/j.egypro.2015.07.746
CAS
Article
Google Scholar
Ghimire A, Sposito F, Frunzo L, Trably E, Escudie R, Pirozzi F, Lens PNL, Esposito G (2016) Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass. Waste Manag 50:55–64. https://doi.org/10.1016/j.wasman.2016.01.044
CAS
Article
PubMed
Google Scholar
Guellout Z, Clion V, Benguerba Y, Dumas C, Ernst B (2018) Study of the dark fermentative hydrogen production using modified ADM1 models. Biochem Eng J 132:9–19. https://doi.org/10.1016/j.bej.2017.12.015
CAS
Article
Google Scholar
Yang G, Wang J (2019) Changes in microbial community structure during dark fermentative hydrogen production. Int J Hydrogen Energy 44:25541–25550. https://doi.org/10.1016/j.ijhydene.2019.08.039
CAS
Article
Google Scholar
Du Y, Zou W, Zhang K, Ye G, Yang J (2020) Advances and applications of Clostridium co-culture systems in biotechnology. Front Microbiol. https://doi.org/10.3389/fmicb.2020.560223.
Article
PubMed
PubMed Central
Google Scholar
Park J-H, Kim D-H, Baik J-H, Park J-H, Yoon J-J, Lee C-Y, Kim S-H (2021) Improvement in H2 production from Clostridium butyricum by co-culture with Sporolactobacillus vineae. Fuel. https://doi.org/10.1016/j.fuel.2020.119051
Article
Google Scholar
Hasibar B, Ergal İ, Moser S, Bochmann G, Rittmann SK-MR, Fuchs W (2020) Increasing biohydrogen production with the use of a co-culture inside a microbial electrolysis cell. Biochem Eng J. https://doi.org/10.1016/j.bej.2020.107802
Article
Google Scholar
Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Soccol CR (2015) Evidence of metabolic shift on hydrogen, ethanol and 1,3-propanediol production from crude glycerol by nitrogen sparging under micro-aerobic conditions using co-culture of Enterobacter aerogenes and Clostridium butyricum. Int J Hydrogen Energy 40:8669–8676. https://doi.org/10.1016/j.ijhydene.2015.05.024
CAS
Article
Google Scholar
Diamantis V, Khan A, Ntougias S, Stamatelatou K, Kapagiannidis AG, Aivasidis A (2012) Continuous biohydrogen production from fruit wastewater at low pH conditions. Bioprocess Biosyst Eng 36:965–974. https://doi.org/10.1007/s00449-012-0832-z
CAS
Article
PubMed
Google Scholar
Argun H, Kargi F (2009) Effects of sludge pre-treatment method on bio-hydrogen production by dark fermentation of waste ground wheat. Int J Hydrogen Energy 34:8543–8548. https://doi.org/10.1016/j.ijhydene.2009.08.049
CAS
Article
Google Scholar
Bouwer EJ, McCarty PL (1983) Effects of 2-bromoethanesulfonic acid and 2- chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl Environ Microbiol 45:1408–1410. https://doi.org/10.1128/aem.45.4.1408-1410.1983
CAS
Article
PubMed
PubMed Central
Google Scholar
Ghimire A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL, Esposito G, Pirozzi F (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manag 152:43–48. https://doi.org/10.1016/j.jenvman.2014.12.049
CAS
Article
Google Scholar
Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol 238:552–558. https://doi.org/10.1016/j.biortech.2017.04.077
CAS
Article
PubMed
Google Scholar
Sinha P, Roy S, Das D (2016) Genomic and proteomic approaches for dark fermentative biohydrogen production. Renew Sustain Energy Rev 56:1308–1321. https://doi.org/10.1016/j.rser.2015.12.035
CAS
Article
Google Scholar
Sivagurunathan P, Kumar G, Pugazhendhi A, Zhen G, Kobayashi T, Xu K (2017) Biohydrogen production from wastewaters. In: Biological wastewater treatment and resource recovery IntechOpen Book Series. https://doi.org/10.5772/65891
Mohanraj S, Pandey A, Mohan SV, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2019) Metabolic engineering and molecular biotechnology of biohydrogen production. In: Biomass, biofuels, biochemicals, 2 ed. https://doi.org/10.1016/B978-0-444-64203-5.00017-4.
Son Y-S, Jeon J-M, Kim D-H, Yang Y-H, Jin Y-S, Cho B-K, Kim S-H, Kumar S, Lee B-D, Yoon J-J (2021) Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. Int J Hydrogen Energy 46:36687–36695. https://doi.org/10.1016/j.ijhydene.2021.08.222
CAS
Article
Google Scholar
Wu Y, Hao Y, Wei X, Shen Q, Ding X, Wang L, Zhao H, Lu Y (2017) Impairment of NADH dehydrogenase and regulation of anaerobic metabolism by the small RNA RyhB and NadE for improved biohydrogen production in Enterobacter aerogenes. Biotechnol Biofuels. https://doi.org/10.1186/s13068-017-0938-2
Article
PubMed
PubMed Central
Google Scholar
Liu D, Sun Y, Li Y, Lu Y (2017) Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Nat Sci Rep. https://doi.org/10.1038/s41598-017-10191-7
Article
Google Scholar
Zhang Q, You S, Li Y, Qu X, Jiang H (2020) Enhanced biohydrogen production from cotton stalk hydrolysate of Enterobacter cloacae WL1318 by overexpression of the formate hydrogen lyase activator gene. Biotechnol Biofuels. https://doi.org/10.1186/s13068-020-01733-9
Article
PubMed
PubMed Central
Google Scholar
Balderas-Hernandez VE, Maldonado KPL, Sanchez A, Smolinski A, Rodriguez ADL (2019) Improvement of hydrogen production by metabolic engineering of Escherichia coli: Modification on both the PTS system and central carbon metabolism. Int J Hydrogen Energy 49:5687–5696. https://doi.org/10.1016/j.ijhydene.2019.01.162
CAS
Article
Google Scholar
Jawed M, Jian P, Li X, Yan Y (2016) Enhanced biohydrogen production by overexpression of hycE AND hycG in Enterobacter aerogenes AB91102. Int J Biomed Eng Sci. https://doi.org/10.5121/ijbes.2016.3202
Article
Google Scholar
Pugazhendhi A, Shobana S, Nguyen DD, Banu JR, Sivagurunathan P, Chang SW, Ponnusamy VK, Kumar G (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrogen Energy 44:1431–1440. https://doi.org/10.1016/j.ijhydene.2018.11.114
CAS
Article
Google Scholar
Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrogen Energy 40:4502–4511. https://doi.org/10.1016/j.ijhydene.2015.02.046
CAS
Article
Google Scholar
Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach. Bioresour Technol 141:212–219. https://doi.org/10.1016/j.biortech.2013.03.082
CAS
Article
PubMed
Google Scholar
Zhang J, Fan C, Zhang H, Wang Z, Zhang J, Song M (2018) Ferric oxide/carbon nanoparticles enhanced bio-hydrogen production from glucose. Int J Hydrogen Energy 43:8729–8738. https://doi.org/10.1016/j.ijhydene.2018.03.143
CAS
Article
Google Scholar
Hussain I, Singh NB, Singh A, Singh H, Singh SC (2015) Green synthesis of nanoparticles and its potential application. Biotech Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7
CAS
Article
Google Scholar
Junior JRN, Torres LAZ, Medeiros ABP, Woiciechowski AL, Martinez-Burgos WJ, Soccol CR (2021) Enhancement of biohydrogen production in industrial wastewaters with vinasse pond consortium using lignin-mediated iron nanoparticles. Int J Hydrogen Energy 46:27431–27443. https://doi.org/10.1016/j.ijhydene.2021.06.009
CAS
Article
Google Scholar
Zhang Q, Xu S, Li Y, Ding P, Zhang Y, Zhao P (2021) Green-synthesized nickel oxide nanoparticles enhances biohydrogen production of Klebsiella sp. WL1316 using lignocellulosic hydrolysate and its regulatory mechanism. Fuel. https://doi.org/10.1016/j.fuel.2021.121585
Article
Google Scholar
Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45. https://doi.org/10.1016/j.micpath.2017.11.013
CAS
Article
PubMed
Google Scholar
Khan I, Anburajan P, Kumar G, Yoon J-J, Bahuguna A, Moura AGLd, Pugazhendhi A, Kim S-H, Kang S-C (2020) Comparative effect of silver nanoparticles (AgNPs) derived from actinomycetes and henna on biohydrogen production by Clostridium beijerinckii (KTCC1737). Int J Energy Res 45:17269–17278. https://doi.org/10.1002/er.6076
CAS
Article
Google Scholar
Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A (2019) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res 151:349–361. https://doi.org/10.1016/j.watres.2018.12.043
CAS
Article
PubMed
Google Scholar
Liska M, Wilson A, Bensted J (2019) Special cements. In: Lea's chemistry of cement and concrete, 5 ed. https://doi.org/10.1016/B978-0-08-100773-0.00013-7.
Wimonsong P, Llorca J, Nitisoravut R (2013) Catalytic activity and characterization of Fe–Zn–Mg–Al hydrotalcites in biohydrogen production. Int J Hydrogen Energy 38:10284–10292. https://doi.org/10.1016/j.ijhydene.2013.06.066
CAS
Article
Google Scholar
Le DTH, Nitisoravut R (2015) Ni-Mg-Al hydrotalcite for improvement of dark fermentative hydrogen production. Energy Proc 79:301–306. https://doi.org/10.1016/j.egypro.2015.11.491
CAS
Article
Google Scholar
Wimonsong P (2021) Carbon—Zn hydrotalcite hybrid catalyst for fermentative hydrogen production. Int J Hydrogen Energy 46:3704–3715. https://doi.org/10.1016/j.ijhydene.2020.10.249
CAS
Article
Google Scholar
Yang G, Wang J (2018) Various additives for improving dark fermentative hydrogen production: a review. Renew Sustain Energy Rev 95:130–146. https://doi.org/10.1016/j.rser.2018.07.029
CAS
Article
Google Scholar
Bao MD, Su HJ, Tan TW (2013) Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112:38–44. https://doi.org/10.1016/j.fuel.2013.04.063
CAS
Article
Google Scholar
Yuan Z, Yang H, Zhi X, Shen J (2008) Enhancement effect of l-cysteine on dark fermentative hydrogen production. Int J Hydrogen Energy 33:6535–6540. https://doi.org/10.1016/j.ijhydene.2008.07.065
CAS
Article
Google Scholar
Zhao X, Ye S, Qi N, Li X, Bao N, Xing D, Ren N (2019) Mechanisms of enhanced bio-H2 production in Ethanoligenens harbinense by l-cysteine supplementation: Analyses at growth and gene transcription levels. Fuel 252:143–147. https://doi.org/10.1016/j.fuel.2019.04.037
CAS
Article
Google Scholar
Guo W-Q, Ding J, Cao G-L, Chen C, Zhou X-J, Ren N-Q (2013) Accelerated startup of hydrogen production expanded granular sludge bed with l-Cysteine supplementation. Energy 60:94–98. https://doi.org/10.1016/j.energy.2013.08.025
CAS
Article
Google Scholar
Nakama Y (2017) Chapter 15—Surfactants. Cosmetic science and technology-theoretical principles and applications. https://doi.org/10.1016/B978-0-12-802005-0.00015-X.
Elsamadony M, Tawfik A, Suzuki M (2015) Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl Energy 149:272–282. https://doi.org/10.1016/j.apenergy.2015.03.127
CAS
Article
Google Scholar
Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Buelna G, Verma M (2016) Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum. Renew Energy 95:542–551. https://doi.org/10.1016/j.renene.2016.03.097
CAS
Article
Google Scholar
Leaño EP, Babel S (2012) The influence of enzyme and surfactant on biohydrogen production and electricity generation using Palm Oil Mill Effluent. J Clean Prod 31:91–99. https://doi.org/10.1016/j.jclepro.2012.02.026
CAS
Article
Google Scholar
Santos FM, Gonçalves AL, Pires JCM (2019) Negative emission technologies. In: Bioenergy with carbon capture and storage. Academic Press. https://doi.org/10.1016/B978-0-12-816229-3.00001-6
Bu J, Wei H-L, Wang Y-T, Cheng J-R, Zhu M-J (2021) Biochar boosts dark fermentative H2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. Water Res. https://doi.org/10.1016/j.watres.2021.117440
Article
PubMed
Google Scholar
Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2018) Effect of biochar addition and temperature on hydrogen production from the first phase of two-phase anaerobic digestion of carbohydrates food waste. J Energy Resour Technol. https://doi.org/10.1115/1.4039318
Article
Google Scholar
Sugiarto Y, Sunyoto NMS, Zhu M, Jones I, Zhang D (2021) Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: the role of minerals. Int J Hydrogen Energy 46:3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256
CAS
Article
Google Scholar
Zhao L, Wang Z, Ren H-Y, Chen C, Nan J, Cao G-L, Yang S-S, Ren N-Q (2021) Residue cornstalk derived biochar promotes direct bio-hydrogen production from anaerobic fermentation of cornstalk. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124338
Article
PubMed
Google Scholar
Sharma P, Melkania U (2017) Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. Int J Hydrogen Energy 42:18865–18874. https://doi.org/10.1016/j.ijhydene.2017.06.171
CAS
Article
Google Scholar
Wu J, Dong L, Zhou C, Liu B, Xing D, Feng L, Wu X, Wang Q, Cao G (2019) Enhanced butanol-hydrogen coproduction by Clostridium beijerinckii with biochar as cell’s carrier. Biores Technol. https://doi.org/10.1016/j.biortech.2019.122141
Article
Google Scholar
Basak N, Das D (2007) The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microbiol Biotechnol 23:31–42. https://doi.org/10.1007/s11274-006-9190-9
CAS
Article
Google Scholar
Basak N, Das D (2009) Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU 001 in an annular photobioreactor: a case study. Biomass Bioenergy 33:911–919. https://doi.org/10.1016/j.biombioe.2009.02.007
CAS
Article
Google Scholar
Bakonyi P, Nemestóthy N, Lankó J, Rivera I, Buitrón G, Bélafi-Bakó K (2015) Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. Int J Hydrogen Energy 40:1690–1697. https://doi.org/10.1016/j.ijhydene.2014.12.002
CAS
Article
Google Scholar
Wainaina S, Parchami M, Mahboubi A, Horváth IS, Taherzadeh MJ (2019) Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol 274:329–334. https://doi.org/10.1016/j.biortech.2018.11.104
CAS
Article
PubMed
Google Scholar
Al-Zuhair S, Al-Hosany M, Zooba Y, Al-Hammadi A, Al-Kaabi S (2013) Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renew Energy 56:85–89. https://doi.org/10.1016/j.renene.2012.09.044
CAS
Article
Google Scholar
Noblecourt A, Christophe G, Larroche C, Santa-Cataline G, Trably E, Fontanille P (2017) High hydrogen production rate in a submerged membrane anaerobic bioreactor. Int J Hydrogen Energy 42:24656–24666. https://doi.org/10.1016/j.ijhydene.2017.08.037
CAS
Article
Google Scholar
Ramírez-Morales JE, Tapia-Venegas E, Campos JL, Ruiz-Filippi G (2019) Operational behavior of a hydrogen extractive membrane bioreactor (HEMB) during mixed culture acidogenic fermentation. Int J Hydrogen Energy 44:25565–25574. https://doi.org/10.1016/j.ijhydene.2019.08.077
CAS
Article
Google Scholar
Lima DMF, Moriera WK, Zaiat M (2013) Comparison of the use of sucrose and glucose as a substrate for hydrogen production in an upflow anaerobic fixed-bed reactor. Int J Hydrogen Energy 38:15074–15083. https://doi.org/10.1016/j.ijhydene.2013.09.003
CAS
Article
Google Scholar
Zhao C, Zhang N, Zheng H, Zhu Q, Utsumi M, Yang Y (2019) Effective and long-term continuous bio-hydrogen production by optimizing fixed-bed material in the bioreactor. Process Biochem 83:55–63. https://doi.org/10.1016/j.procbio.2019.04.021
CAS
Article
Google Scholar
Muñoz-Páez KM, Alvarado-Michi EL, Moreno-Andrade I, Buitrón G, Valdez-Vazquez I (2020) Comparison of suspended and granular cell anaerobic bioreactors for hydrogen production from acid agave bagasse hydrolyzates. Int J Hydrogen Energy 45:275–285. https://doi.org/10.1016/j.ijhydene.2019.10.232
CAS
Article
Google Scholar
Chu C-Y, Hastuti ZD, Dewi EL, Purwanto WW, Priyanto U (2016) Enhancing strategy on renewable hydrogen production in a continuous bioreactor with packed biofilter from sugary wastewater. Int J Hydrogen Energy 41:4404–4412. https://doi.org/10.1016/j.ijhydene.2015.06.132
CAS
Article
Google Scholar
Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotech Lett 28:831–835. https://doi.org/10.1007/s10529-006-9008-8
CAS
Article
Google Scholar
Lee KS, Tseng T-S, Liu Y-W, Hsiao Y-D (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrogen Energy 37:15556–15562. https://doi.org/10.1016/j.ijhydene.2012.04.039
CAS
Article
Google Scholar
Rajhi H, Puyol D, Martinez MC, Diaz EE, Sanz JL (2016) Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Front Environ Sci Eng 10:513–521. https://doi.org/10.1007/s11783-015-0777-y
CAS
Article
Google Scholar
Kisielewska M, Dębowski M, Zieliński M (2015) Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 38:1925–1933. https://doi.org/10.1007/s00449-015-1434-3
CAS
Article
PubMed
Google Scholar
Ramkumar N, Anupama PD, Nayak T, Subudhi S (2021) Scale up of biohydrogen production by a pure strain; Clostridium butyricum TM-9A at regulated pH under decreased partial pressure. Renew Energy. https://doi.org/10.1016/j.renene.2021.01.106
Article
Google Scholar
Kirli B, Kapdan IK (2016) Selection of microorganism immobilization particle for dark fermentative biohydrogen production by repeated batch operation. Renewable Energy 87:697–702. https://doi.org/10.1016/j.renene.2015.11.003
CAS
Article
Google Scholar
Zhao L, Cao G-L, Sheng T, Ren H-Y, Wang A-J, Zhang J, Zhong Y-J, Ren N-Q (2017) Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. Biores Technol 243:548–555. https://doi.org/10.1016/j.biortech.2017.06.161
CAS
Article
Google Scholar
Karapinar I, Yildiz PG, Pamuk RT, Georgec FK (2020) The effect of hydraulic retention time on thermophilic dark fermentative biohydrogen production in the continuously operated packed bed bioreactor. Int J Hydrogen Energy 45:3524–3531. https://doi.org/10.1016/j.ijhydene.2018.12.195
CAS
Article
Google Scholar
Han J, Lee D, Cho J, Lee J, Kim S (2011) Hydrogen production from biodiesel byproduct by immobilized Enterobacter aerogenes. Bioprocess Biosyst Eng 35:151–157. https://doi.org/10.1007/s00449-011-0593-0
CAS
Article
PubMed
Google Scholar
Khan MBH, Kana EBG (2016) Design, implementation and assessment of a novel bioreactor for fermentative biohydrogen process development. Int J Hydrogen Energy 41:10136–10144. https://doi.org/10.1016/j.ijhydene.2016.04.208
CAS
Article
Google Scholar
Singh L, Wahid ZA (2014) Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique. Int J Energy Res 39:215–222. https://doi.org/10.1002/er.3231
CAS
Article
Google Scholar
Rai P, Pandey A, Pandey A (2022) Evaluation of low cost immobilized support matrices in augmentation of biohydrogen potential in dark fermentation process using B. licheniformis. Fuel. https://doi.org/10.1016/j.fuel.2021.122275
Article
Google Scholar
Gokfiliz P, Karapinar I (2017) The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int J Hydrogen Energy 42:2553–2561. https://doi.org/10.1016/j.ijhydene.2016.03.041
CAS
Article
Google Scholar
Boshagh F, Rostami K, Moazami N (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. Int J Hydrogen Energy 44:14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199
CAS
Article
Google Scholar
Chen Y, Yin Y, Wang J (2021) Comparison of fermentative hydrogen production from glycerol using immobilized and suspended mixed cultures. Int J Hydrogen Energy 46:8986–8994. https://doi.org/10.1016/j.ijhydene.2021.01.003
CAS
Article
Google Scholar
Sekoai PT, Yoro KO, Daramola MO (2016) Batch fermentative biohydrogen production process using immobilized anaerobic sludge from organic solid waste. Environments 3:38. https://doi.org/10.3390/environments3040038
Article
Google Scholar
Seelert T, Ghosh D, Yargeau V (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99:4107–4116. https://doi.org/10.1007/s00253-015-6484-6
CAS
Article
PubMed
Google Scholar
Sekoai PT, Ayeni AO, Daramola MO (2017) Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valoriz 10:1177–1189. https://doi.org/10.1007/s12649-017-0136-2
CAS
Article
Google Scholar
Penniston J, Kana EBG (2017) Impact of medium pH regulation on biohydrogen production in dark fermentation process using suspended and immobilized microbial cells. Biotechnol Biotechnol Equip 32:204–212. https://doi.org/10.1080/13102818.2017.1408430
CAS
Article
Google Scholar
Kotay SM, Das D (2009) Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrogen Energy 34:7489–7496. https://doi.org/10.1016/j.ijhydene.2009.05.109
CAS
Article
Google Scholar
Okonkwo O, Escudie R, Bernet N, Mangayil R, Lakaniemi A-M, Trably E (2020) Bioaugmentation enhances dark fermentative hydrogen production in cultures exposed to short-term temperature fluctuations. Appl Microbiol Biotechnol 104:439–449. https://doi.org/10.1007/s00253-019-10203-8
CAS
Article
PubMed
Google Scholar
Okonkwo O, Papirio S, Trably E, Escudie R, Lakaniemi A-M, Esposito G (2020) Enhancing thermophilic dark fermentative hydrogen production at high glucose concentrations via bioaugmentation with Thermotoga neapolitana. Int J Hydrogen Energy 45:17241–17249. https://doi.org/10.1016/j.ijhydene.2020.04.231
CAS
Article
Google Scholar
Poirier S, Steyer J-P, Bernet N, Trably E (2020) Mitigating the variability of hydrogen production in mixed culture through bioaugmentation with exogenous pure strains. Int J Hydrogen Energy 45:2617–2626. https://doi.org/10.1016/j.ijhydene.2019.11.116
CAS
Article
Google Scholar
Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I (2014) Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol 48:7669–7676. https://doi.org/10.1021/es5017075
CAS
Article
PubMed
Google Scholar
Kumar G, Bakonyi P, Sivagurunathan P, Kim S-H, Nemestóthy N, Bélafi-Bakó K, Lin C-Y (2015) Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains. J Biosci Bioeng 120:155–160. https://doi.org/10.1016/j.jbiosc.2014.12.011
CAS
Article
PubMed
Google Scholar
Sathyaprakashan P, Kannan G (2015) Economics of bio-hydrogen production. Int J Environ Sci Dev 6:352–356. https://doi.org/10.7763/IJESD.2015.V6.617
Article
Google Scholar
Han W, Fang J, Liu Z, Tang J (2016) Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour Technol 202:107–112. https://doi.org/10.1016/j.biortech.2015.11.072
CAS
Article
PubMed
Google Scholar
Chang P-L, Hsu C-W (2012) Value analysis for commercialization of fermentative hydrogen production from biomass. Int J Hydrogen Energy 37:15746–15752. https://doi.org/10.1016/j.ijhydene.2012.02.113
CAS
Article
Google Scholar
Gomez-Florez M, Nakhla G, Hafez H (2017) Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express. https://doi.org/10.1186/s13568-016-0256-2
Article
Google Scholar
Eder AS, Magrini FE, Spengler A, Silva JTd, Beal LL, Paesi S (2020) Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co-cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.100638
Article
Google Scholar
Zhang C, Kang X, Liang N, Abdullah A (2017) Improvement of biohydrogen production from dark fermentation by cocultures and activated carbon immobilization. Energy Fuels 31:12217–12222. https://doi.org/10.1021/acs.energyfuels.7b02035
CAS
Article
Google Scholar
Phowan P, Reungsang A, Danvirutai P (2010) Bio-hydrogen Production from Cassava Pulp Hydrolysate using Co-culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology 9:348–354. https://doi.org/10.3923/biotech.2010.348.354
CAS
Article
Google Scholar
Maru BT, López F, Kengen SWM, Constantí M, Medina F (2016) Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186:375–384. https://doi.org/10.1016/j.fuel.2016.08.043
CAS
Article
Google Scholar
Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Biores Technol 144:623–631. https://doi.org/10.1016/j.biortech.2013.07.018
CAS
Article
Google Scholar
Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37:1120–1124. https://doi.org/10.1016/j.ijhydene.2011.02.078
CAS
Article
Google Scholar
Zhang M-L, Fan Y-T, Xing Y, Pan C-M, Zhang G-S, Lay J-J (2007) Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass Bioenerg 31:250–254. https://doi.org/10.1016/j.biombioe.2006.08.004
CAS
Article
Google Scholar
Ramprakash B, Muthukumar K (2014) Comparative study on the production of biohydrogen from rice mill wastewater. Int J Hydrogen Energy 39:14613–14621. https://doi.org/10.1016/j.ijhydene.2014.06.029
CAS
Article
Google Scholar
Wongthanate J, Chinnacotpong K, Khumpong M (2014) Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int J Energy Environ Eng. https://doi.org/10.1186/2251-6832-5-6
Article
Google Scholar
Leaño EP, Anceno AJ, Babel S (2012) Ultrasonic pretreatment of palm oil mill effluent: Impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrogen Energy 37:12241–12249. https://doi.org/10.1016/j.ijhydene.2012.06.007
CAS
Article
Google Scholar
Salem AH, Brunstermann R, Mietzel T, Widmann R (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.01.114
Article
Google Scholar
Wang H, Zhi Z, Wang J, Ma S (2012) Comparison of various pretreatment methods for biohydrogen production from cornstalk. Bioprocess Biosyst Eng 35:1239–1245. https://doi.org/10.1007/s00449-012-0711-7
CAS
Article
PubMed
Google Scholar
Cai M, Liu J, Wei Y (2004) Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol. https://doi.org/10.1021/es0349204
Article
PubMed
PubMed Central
Google Scholar
Wong YM, Juan JC, Ting A, Wu TY (2014) High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge. Energy 72:628–635. https://doi.org/10.1016/j.energy.2014.05.088
CAS
Article
Google Scholar
Yang G, Wang J (2020) Biohydrogen production from waste activated sludge pretreated by combining sodium citrate with ultrasonic: energy conversion and microbial community. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113436
Article
Google Scholar
Yang S-S, Guo W-Q, Cao G-L, Zheng H-S, Ren N-Q (2012) Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol 124:347–354. https://doi.org/10.1016/j.biortech.2012.08.007
CAS
Article
PubMed
Google Scholar
Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770. https://doi.org/10.1007/s00253-014-5600-3
CAS
Article
PubMed
Google Scholar
Zhao J, Song W, Cheng J, Liu M, Zhang C, Cen K (2017) Improvement of fermentative hydrogen production using genetically modified Enterobacter aerogenes. Int J Hydrogen Energy 42:3676–3681. https://doi.org/10.1016/j.ijhydene.2016.08.161
CAS
Article
Google Scholar
Zhao H, Lu Y, Wang L, Zhang C, Yang C, Xing X (2015) Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Biores Technol 194:99–107. https://doi.org/10.1016/j.biortech.2015.06.149
CAS
Article
Google Scholar
Li Y, Hu J, Qu C, Chen L, Guo X, Fu H, Wang J (2019) Engineered Thermoanaerobacterium aotearoense with nfnAB knockout for improved hydrogen production from lignocellulose hydrolysates. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1559-8
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Wu Q, Xu Q, Zhu L, Huang H (2017) Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Sci Rep. https://doi.org/10.1038/s41598-017-07207-7
Article
PubMed
PubMed Central
Google Scholar
Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrogen Energy 40:12956–12963. https://doi.org/10.1016/j.ijhydene.2015.08.004
CAS
Article
Google Scholar
Cheng J, Li H, Ding L, Zhou J, Song W, Li Y-Y, Lin R (2020) Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: The effect of magnetite nanoparticles on microbial electron transfer and syntrophism. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125394
Article
PubMed
PubMed Central
Google Scholar
Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102:7903–7909. https://doi.org/10.1016/j.biortech.2011.05.089
CAS
Article
PubMed
Google Scholar
Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245. https://doi.org/10.1016/j.biortech.2013.05.042
CAS
Article
PubMed
Google Scholar
Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. J Biotechnol 192:87–95. https://doi.org/10.1016/j.jbiotec.2014.10.012
CAS
Article
PubMed
Google Scholar
Zhang J, Li W, Yang J, Li Z, Zhang J, Zhao W, Zang L (2021) Cobalt ferrate nanoparticles improved dark fermentation for hydrogen evolution. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.128275
Article
PubMed
PubMed Central
Google Scholar
Sybounya S, Nitisoravut R (2021) Hybrid composite of modified commercial activated carbon and Zn-Ni hydrotalcite for fermentative hydrogen production. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104801
Article
Google Scholar
Jamali NS, Rashidi NFD, Jahim JM, O-Thong S, Jehlee A, Engliman NS (2019) Thermophilic biohydrogen production from palm oil mill effluent: Effect of immobilized cells on granular activated carbon in fluidized bed reactor. Food Bioprod Process 117:231–240. https://doi.org/10.1016/j.fbp.2019.07.012
CAS
Article
Google Scholar
Patel SKS, Gupta RK, Das D, Lee J-K, Kalia VC (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.125037
Article
Google Scholar
Ma Z, Li C, Su H (2017) Dark bio-hydrogen fermentation by an immobilized mixed culture of Bacillus cereus and Brevumdimonas naejangsanensis. Renew Energy 105:458–464. https://doi.org/10.1016/j.renene.2016.12.046
CAS
Article
Google Scholar
Jamali NS, Jahim JM, Mumtaz T, Abdul PM (2021) Dark fermentation of palm oil mill effluent by Caldicellulosiruptor saccharolyticus immobilized on activated carbon for thermophilic biohydrogen production. Environ Technol Innov. https://doi.org/10.1016/j.eti.2021.101477
Article
Google Scholar
Sivagurunathan P, Kumar G, Sen B, Lin C-Y (2014) Development of a novel hybrid immobilization material (HY-IM) for fermentative biohydrogen production from beverage wastewater. J Chin Chem Soc 61:827–830. https://doi.org/10.1002/jccs.201300636
CAS
Article
Google Scholar
Yang Z, Guo R, Shi X, He S, Wang L, Dai M, Qiu Y, Dang X (2016) Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure. Bioresour Technol 211:319–326. https://doi.org/10.1016/j.biortech.2016.03.097
CAS
Article
PubMed
Google Scholar
Villanueva-Galindo E, Moreno-Andrade I (2021) Bioaugmentation on hydrogen production from food waste. Int J Hydrogen Energy 46:25985–25994. https://doi.org/10.1016/j.ijhydene.2020.11.092
CAS
Article
Google Scholar
Zhang K, Cao G-L, Ren N-Q (2019) Bioaugmentation with Thermoanaerobacterium thermosaccharolyticum W16 to enhance thermophilic hydrogen production using corn stover hydrolysate. Int J Hydrogen Energy 44:5821–5829. https://doi.org/10.1016/j.ijhydene.2019.01.045
CAS
Article
Google Scholar
Sheng T, Meng Q, Wen X, Sun C, Yang L, Li L (2021) Bioaugmentation with Ruminiclostridium thermocellum M3 to enhance thermophilic hydrogen production from agricultural solid waste. J Chem Technol Biotechnol 96:1623–1631. https://doi.org/10.1002/jctb.6682
CAS
Article
Google Scholar
Cieciura-Włoch W, Borowski S, Otlewska A (2020) Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation. Renew Energy 153:1226–1237. https://doi.org/10.1016/j.renene.2020.02.085
CAS
Article
Google Scholar
Elsamadony M, Tawfik A (2018) Maximization of hydrogen fermentative process from delignified water hyacinth using sodium chlorite. Energy Convers Manag 157:257–265. https://doi.org/10.1016/j.enconman.2017.12.013
CAS
Article
Google Scholar
Baik J-H, Jung J-H, Sim Y-B, Park J-H, Kim SM, Yang J, Kim S-H (2022) High-rate biohydrogen production from xylose using a dynamic membrane bioreactor. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126205
Article
PubMed
Google Scholar
Jia X, Wang Y, Ren L, Li M, Tang R, Jiang Y, Hou J (2019) Early warning indicators and microbial community dynamics during unstable stages of continuous hydrogen production from food wastes by thermophilic dark fermentation. Int J Hydrogen Energy 44:30000–30013. https://doi.org/10.1016/j.ijhydene.2019.08.082
CAS
Article
Google Scholar